LOWER-UPPER SYMMETRIC-GAUSS-SEIDEL METHOD FOR THE EULER AND NAVIER-STOKES EQUATIONS

被引:856
作者
YOON, S [1 ]
JAMESON, A [1 ]
机构
[1] PRINCETON UNIV,PRINCETON,NJ 08544
关键词
D O I
10.2514/3.10007
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
引用
收藏
页码:1025 / 1026
页数:2
相关论文
共 50 条
[41]   Discontinuous Galerkin finite element method for Euler and Navier-Stokes equations [J].
Lin, S.-Y. ;
Chin, Y.-S. .
2016, (31)
[42]   Discontinuous Galerkin finite element method for Euler and Navier-Stokes equations [J].
Lin, S.-Y. ;
Chin, Y.-S. .
2016, (31)
[43]   Upper and lower bounds of temporal and spatial decays for the Navier-Stokes equations [J].
Bae, HO ;
Jin, BJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 209 (02) :365-391
[44]   Boundary layer problem: Navier-Stokes equations and Euler equations [J].
Chemetov, N. V. ;
Cipriano, F. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (06) :2091-2104
[45]   求解Navier-Stokes方程的Gauss-Seidel型格式 [J].
俞崇庆,侯建民 .
内蒙古大学学报(自然科学版), 1994, (02) :134-138
[46]   A centrifugal wave solution of the Euler and Navier-Stokes equations [J].
Shapiro, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2001, 52 (06) :913-923
[47]   On the Euler plus Prandtl Expansion for the Navier-Stokes Equations [J].
Kukavica, Igor ;
Nguyen, Trinh T. ;
Vicol, Vlad ;
Wang, Fei .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
[48]   Relaxed Euler systems and convergence to Navier-Stokes equations [J].
Peng, Yue-Jun .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2021, 38 (02) :369-401
[49]   Liouville type theorems for the Euler and the Navier-Stokes equations [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2011, 228 (05) :2855-2868
[50]   The Anisotropic Lagrangian Averaged Euler and Navier-Stokes Equations [J].
JERROLD E. MARSDEN ;
STEVE SHKOLLER .
Archive for Rational Mechanics and Analysis, 2003, 166 :27-46