LONG-RANGE SCATTERING FOR NONLINEAR SCHRODINGER AND HARTREE-EQUATIONS IN SPACE DIMENSION N-GREATER-THAN-OR-EQUAL-TO-2

被引:145
作者
GINIBRE, J
OZAWA, T
机构
[1] Laboratoire de Physique Théorique et Hautes Energies, Université de Paris Sud, Orsay, F-91405
关键词
D O I
10.1007/BF02097031
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the scattering problem for the non-linear Schrodinger (NLS) equation with a power interaction with critical power p = 1 + 2/n in space dimensions n = 2 and 3 and for the Hartree equation with potential \x\-1 in space dimension n greater-than-or-equal-to 2. We prove the existence of modified wave operators in the L2 sense on a dense set of small and sufficiently regular asymptotic states.
引用
收藏
页码:619 / 645
页数:27
相关论文
共 25 条
[2]   RAPIDLY DECAYING SOLUTIONS OF THE NONLINEAR SCHRODINGER-EQUATION [J].
CAZENAVE, T ;
WEISSLER, FB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 147 (01) :75-100
[3]  
CAZENAVE T, 1989, TEXTOS METODOS MATH, V22
[4]  
GINIBRE J, 1985, J MATH PURE APPL, V64, P363
[5]   CLASS OF NON-LINEAR SCHRODINGER-EQUATIONS WITH NON LOCAL INTERACTION [J].
GINIBRE, J ;
VELO, G .
MATHEMATISCHE ZEITSCHRIFT, 1980, 170 (02) :109-136
[6]   CLASS OF NON-LINEAR SCHRODINGER EQUATIONS .1. CAUCHY-PROBLEM, GENERAL-CASE [J].
GINIBRE, J ;
VELO, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1979, 32 (01) :1-32
[7]  
GINIBRE J, UNPUB
[8]   L-INFINITY(R'')-DECAY OF CLASSICAL-SOLUTIONS FOR NONLINEAR SCHRODINGER-EQUATIONS [J].
HAYASHI, N ;
TSUTSUMI, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1986, 104 :309-327
[9]  
HAYASHI N, 1987, LECT NOTES MATH, V1285, P162
[10]  
HAYASHI N, 1988, ANN I H POINCARE-PHY, V48, P17