Aluminum stress signaling in plants

被引:233
作者
Panda, Sanjib Kumar [1 ]
Baluska, Frantisek [2 ]
Matsumoto, Hideaki [3 ]
机构
[1] Assam Cent Univ, Dept Life Sci, Plant Biochem & Mol Biol Lab, Silchar, India
[2] Univ Bonn, Inst Cellular & Mol Bot, Bonn, Germany
[3] Okayama Univ, Res Inst Bioresources, Kurashiki, Okayama, Japan
关键词
aluminum; toxicity; tolerance; signal transduction; plants;
D O I
10.4161/psb.4.7.8903
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology.
引用
收藏
页码:592 / 597
页数:6
相关论文
共 80 条
[1]   A role for brassinosteroids in the amelioration of aluminium stress through antioxidant system in mung bean (Vigna radiata L. Wilczek) [J].
Ali, B. ;
Hasan, S. A. ;
Hayat, S. ;
Hayat, Q. ;
Yadav, S. ;
Fariduddin, Q. ;
Ahmad, A. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2008, 62 (02) :153-159
[2]   Different Effects of Aluminum on the Actin Cytoskeleton and Brefeldin A-Sensitive Vesicle Recycling in Root Apex Cells of Two Maize Varieties Differing in Root Elongation Rate and Aluminum Tolerance [J].
Amenos, Montse ;
Corrales, Isabel ;
Poschenrieder, Charlotte ;
Illes, Peter ;
Baluka, Frantisek ;
Barcelo, Juan .
PLANT AND CELL PHYSIOLOGY, 2009, 50 (03) :528-540
[3]   CHROMOSOME LOCATION OF GENES-CONTROLLING ALUMINUM TOLERANCE IN WHEAT, RYE, AND TRITICALE [J].
ANIOL, A ;
GUSTAFSON, JP .
CANADIAN JOURNAL OF GENETICS AND CYTOLOGY, 1984, 26 (06) :701-705
[4]   F-actin-dependent endocytosis of cell wall pectins in meristematic root cells. Insights from brefeldin A-induced compartments [J].
Baluska, F ;
Hlavacka, A ;
Samaj, J ;
Palme, K ;
Robinson, DG ;
Matoh, T ;
McCurdy, DW ;
Menzel, D ;
Volkmann, D .
PLANT PHYSIOLOGY, 2002, 130 (01) :422-431
[5]   Plant synapses: actin-based domains for cell-to-cell communication [J].
Baluska, F ;
Volkmann, D ;
Menzel, D .
TRENDS IN PLANT SCIENCE, 2005, 10 (03) :106-111
[6]  
Baluska F, 1993, CELL SCI, V103, P191
[7]  
Baluska F, 2009, NOVA ACTA L IN PRESS, V96
[8]   Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review [J].
Barcelo, J ;
Poschenrieder, C .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2002, 48 (01) :75-92
[9]   INDUCTION OF MICROSOMAL MEMBRANE-PROTEINS IN ROOTS OF AN ALUMINUM-RESISTANT CULTIVAR OF TRITICUM-AESTIVUM L UNDER CONDITIONS OF ALUMINUM STRESS [J].
BASU, A ;
BASU, U ;
TAYLOR, GJ .
PLANT PHYSIOLOGY, 1994, 104 (03) :1007-1013
[10]   THE GENOMIC INHERITANCE OF ALUMINUM TOLERANCE IN ATLAS-66 WHEAT [J].
BERZONSKY, WA .
GENOME, 1992, 35 (04) :689-693