On Finite Rings in Which Zero-Divisor Graphs Satisfy the Dirac's Condition

被引:5
作者
Kuzmina, A. S. [1 ]
Maltsev, Yu. N. [1 ]
机构
[1] Altai State Pedag Univ, Molodezhnaya ul 55, Barnaul 656031, Russia
关键词
Associative ring; finite ring; zero-divisor graph; the Dirac's theorem;
D O I
10.1134/S1995080215040071
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study finite rings such that their zero-divisor graphs satisfy the Dirac's condition. In particular, we give full description of finite rings with identity such that their zero-divisor graphs satisfy the Dirac's condition.
引用
收藏
页码:375 / 383
页数:9
相关论文
共 17 条
[1]   On zero-divisor graphs of finite rings [J].
Akbari, S. ;
Mohammadian, A. .
JOURNAL OF ALGEBRA, 2007, 314 (01) :168-184
[2]   On the zero-divisor graph of a commutative ring [J].
Akbari, S ;
Mohammadian, A .
JOURNAL OF ALGEBRA, 2004, 274 (02) :847-855
[3]   When a zero-divisor graph is planar or a complete r-partite graph [J].
Akbari, S ;
Maimani, HR ;
Yassemi, S .
JOURNAL OF ALGEBRA, 2003, 270 (01) :169-180
[4]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[5]   COLORING OF COMMUTATIVE RINGS [J].
BECK, I .
JOURNAL OF ALGEBRA, 1988, 116 (01) :208-226
[6]   Planar zero-divisor graphs [J].
Belshoff, Richard ;
Chapman, Jeremy .
JOURNAL OF ALGEBRA, 2007, 316 (01) :471-480
[7]  
Bollobas B., 1979, GRAPH THEORYAN INTRO
[8]  
DIESTEL R, 2002, GRAPH THEORY
[9]  
Elizarov VP., 2006, FINITE RINGS
[10]  
Jacobson N., 1964, LECTURES ABSTRACT AL, VII