ON THE INCREMENTS OF THE DOUBLY STOCHASTIC POISSON PROCESSES

被引:0
作者
ALVAREZANDRADE, S
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1992年 / 315卷 / 05期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {X (t) }t greater-than-or-equal-to 0 be a doubly stochastic Poisson process, of the form X (t) = N (LAMBDA(t)), where {N (t) }t greater-than-or-equal-to 0 is a standard Poisson process and { LAMBDA (t) }t greater-than-or-equal-to 0 is a process with independent and stationary increments, independent of N (0). We study the asymptotic behaviour of the maximal increments of X (t), of the form L (T, K) = sup {X (t + K) - X (t) } when K = K(T) satisfies suitable 0 less-than-or-equal-to t less-than-or-equal-to T-K conditions of growth and regularity.
引用
收藏
页码:609 / 614
页数:6
相关论文
共 16 条
[1]  
BACRO JN, 1987, ANN I H POINCARE-PR, V23, P195
[2]  
COX DR, 1955, J ROY STAT SOC B, V17, P129
[3]  
COX DR, 1966, STATISTICAL ANAL SER
[4]   IMPROVED ERDOS-RENYI AND STRONG APPROXIMATION LAWS FOR INCREMENTS OF PARTIAL-SUMS [J].
CSORGO, M ;
STEINEBACH, J .
ANNALS OF PROBABILITY, 1981, 9 (06) :988-996
[5]   LIMIT LAWS OF ERDOS-RENYI-SHEPP TYPE [J].
DEHEUVELS, P ;
DEVROYE, L .
ANNALS OF PROBABILITY, 1987, 15 (04) :1363-1386
[6]  
GRANDELL J, 1976, LECTURE NOTES MATH, V529
[7]  
HUSE V, 1984, THESIS U MARBURG
[8]  
Ito K., 1965, DIFFUSION PROCESSES
[9]  
KARR AF, 1986, POINT PROCESSES THEI
[10]  
KINGMAN JFC, 1964, P CAMB PHILOS SOC, V60, P923