Direct Schur complement method by domain decomposition based on H-matrix approximation

被引:17
|
作者
Hackbusch, Wolfgang [1 ]
Khoromskij, Boris N. [1 ]
Kriemann, Ronald [1 ]
机构
[1] Max Planck Inst Math Sci, Inselstr 22-26, D-04103 Leipzig, Germany
关键词
Elliptic equations; Data-sparse H-matrix approximation; BEM; FEM; FETI; Schur complement; Domain decomposition;
D O I
10.1007/s00791-005-0008-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The goal of this paper is the construction of a data-sparse approximation to the Schur complement on the interface corresponding to FEM and BEM approximations of an elliptic equation by domain decomposition. Using the hierarchical (H-matrix) formats we elaborate the approximate Schur complement inverse in an explicit form. The required cost O(N-Gamma log(q) N-Gamma) is almost linear in N-Gamma -the number of degrees of freedom on the interface. As input, we require the Schur complement matrices corresponding to subdomains and represented in the H-matrix format. In the case of piecewise constant coefficients these matrices can be computed via the BEM representation with the cost O(N-Gamma log(q) N-Gamma), while in the general case the FEM discretisation leads to the complexity O(N-Omega log(q) N-Omega), where N-Omega is the number of degrees of freedom in the domain.
引用
收藏
页码:179 / 188
页数:10
相关论文
共 50 条
  • [1] Direct Schur complement method by hierarchical matrix techniques
    Hackbusch, W
    Khoromskij, BN
    Kriemann, R
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING, 2005, 40 : 581 - 588
  • [2] A Parallel Direct Domain Decomposition Solver Based on Schur Complement for Electromagnetic Finite Element Analysis
    Zuo, Sheng
    Lin, Zhongchao
    Garcia-Donoro, Daniel
    Zhang, Yu
    Zhao, Xunwang
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (04): : 458 - 462
  • [3] Accelerating adjoint variable method based photonic optimization with Schur complement domain decomposition
    Zhao, Nathan Z.
    Boutami, Salim
    Fan, Shanhui
    OPTICS EXPRESS, 2019, 27 (15): : 20711 - 20719
  • [4] H-matrix approximation on graded meshes
    Hackbusch, W
    Khoromskij, BN
    MATHEMATICS OF FINITE ELEMENTS AND APPLICATIONS X, 2000, : 307 - 316
  • [5] Performance evaluation of local schur complement approach in domain decomposition method
    1600, Japan Society for Computational Engineering and Science (2016):
  • [6] The condition number of the Schur complement in domain decomposition
    Brenner, SC
    NUMERISCHE MATHEMATIK, 1999, 83 (02) : 187 - 203
  • [7] The condition number of the Schur complement in domain decomposition
    Susanne C. Brenner
    Numerische Mathematik, 1999, 83 : 187 - 203
  • [8] Blended kernel approximation in the H-matrix techniques
    Hackbusch, W
    Khoromskij, BN
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2002, 9 (04) : 281 - 304
  • [9] Towards H-matrix approximation of linear complexity
    Hackbusch, W
    Khoromskij, BN
    PROBLEMS AND METHODS IN MATHEMATICAL PHYSICS: THE SIEGFRIED PROSSDORF MEMORIAL VOLUME, 2001, 121 : 194 - 220
  • [10] H-Matrix approximation for the operator exponential with applications
    Gavrilyuk, IP
    Hackbusch, W
    Khoromskij, BN
    NUMERISCHE MATHEMATIK, 2002, 92 (01) : 83 - 111