DYNAMICS OF THE MCKEAN-VLASOV EQUATION

被引:49
作者
CHAN, T
机构
关键词
EIGENVALUES OF RANDOM MATRICES; WIGNER SEMICIRCLE LAW; MEASURE-VALUED DIFFUSION; MCKEAN-VLASOV EQUATION;
D O I
10.1214/aop/1176988866
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This note studies the deterministic flow of measures which is the limiting case as n --> infinity of Dyson's model of the motion of the eigenvalues of random symmetric n x n matrices. Though this flow is nonlinear, highly singular and apparently of Wiener-Hopf type, it may be solved explicitly without recourse to Wiener-Hopf theory. The solution greatly clarifies the role of the famous Wigner semicircle law.
引用
收藏
页码:431 / 441
页数:11
相关论文
共 7 条
[1]  
CHAMN T, 1992, PROBAB THEORY REL, V93, P249
[2]  
Dawson D. A., 1987, Stochastics, V20, P247, DOI 10.1080/17442508708833446
[4]  
DAWSON DA, 1988, PITMAN RES NOTES MAT, V197
[5]  
Dym H., 1976, PROBABILITY MATH STA
[6]  
DYSON FJ, 1962, J MATH PHYS, V3, P140, DOI 10.1063/1.1703773
[7]  
MEHTA ML, 1967, RANDOM MATRICES