AN OSCILLATION METHOD FOR 4TH-ORDER, SELF-ADJOINT, 2-POINT BOUNDARY-VALUE-PROBLEMS WITH NONLINEAR EIGENVALUES

被引:36
作者
GREENBERG, L
机构
关键词
EIGENVALUE; EIGENFUNCTION; SELF-ADJOINT; OSCILLATION; ENERGY INNER PRODUCT; WRONSKIAN; STURMLIOUVILLE EQUATION;
D O I
10.1137/0522067
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An oscillation method is presented for finding the eigenvalues of a fourth-order, self-adjoint, two-point boundary value problem. The eigenvalue may occur nonlinearly in the differential equation, and may occur in the boundary conditions. The method can approximate the nth eigenvalue without consideration of other eigenvalues. It provides an a posteriori error estimate for the approximate eigenvalue.
引用
收藏
页码:1021 / 1042
页数:22
相关论文
共 13 条
[1]  
[Anonymous], 1934, AM MATH SOC C PUBL
[2]  
BOCHER M, 1917, LECONS METHODS STURM
[3]  
Chandrasekhar S., 1981, Hydrodynamic and Hydromagnetic Stability
[4]  
CHANDRASEKHAR S, 1954, AM MATH MONTHLY, V61, P32
[5]  
COLLATZ L, 1948, EIGENWERTPROBLEME IH
[6]  
Drazin P.G., 1982, Hydrodynamic Stability
[7]   GENERALIZED STURM THEOREM [J].
EDWARDS, HM .
ANNALS OF MATHEMATICS, 1964, 80 (01) :22-&
[8]   A CONTINUOUS ANALOG OF STURM SEQUENCES IN THE CONTEXT OF STURM-LIOUVILLE EQUATIONS [J].
GREENBERG, L ;
BABUSKA, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (04) :920-945
[9]  
GREENBERG L, EXISTENCE THEOREMS N
[10]   A NUMERICAL-METHOD FOR ACOUSTIC NORMAL-MODES FOR SHEAR FLOWS [J].
PORTER, MB ;
REISS, EL .
JOURNAL OF SOUND AND VIBRATION, 1985, 100 (01) :91-105