NONLINEAR ELASTIC INSTABILITY OF GRAVITY-DRIVEN FLOW OF A THIN VISCOELASTIC FILM DOWN AN INCLINED PLANE

被引:37
|
作者
KANG, F [1 ]
CHEN, KP [1 ]
机构
[1] ARIZONA STATE UNIV,DEPT MECH & AEROSP ENGN,TEMPE,AZ 85287
关键词
BIFURCATION; ELASTIC INSTABILITY; THIN VISCOELASTIC FILMS;
D O I
10.1016/0377-0257(94)01333-D
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A nonlinear evolution equation for the thickness of a thin viscoelastic film flowing down an inclined plane is derived for an Oldroyd-B fluid, using a long wave approximation. The evolution equation is valid to the second order in a small parameter which measures the relative thickness of the film to a typical wavelength. For a very thin film, viscoelasticity dominates the stability of the film and it can cause a purely elastic instability. The weakly nonlinear development of a monochromatic wave resulting from this elastic instability is studied using the second-order evolution equation which allows us to investigate the effects of inclination angle on the bifurcation. It is found that although extremely long waves bifurcate subcritically, the linearly most amplified wave does bifurcate supercritically when the surface tension parameter J > 13.8035. It is demonstrated that for a fixed bifurcation parameter delta = Wi - Wi(c), increasing the inclination angle can reduce the equilibrium amplitude for a supercritical bifurcating wave.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 50 条
  • [21] Computational-Analysis of the Non-Isothermal Dynamics of the Gravity-Driven Flow of Viscoelastic-Fluid-Based Nanofluids Down an Inclined Plane
    Khan, Idrees
    Chinyoka, Tiri
    Gill, Andrew
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2023, 19 (03): : 767 - 781
  • [22] Gravity-driven flow of a viscoelastic liquid film along a vertical wall
    Andersson, HI
    Dahl, EN
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (14) : 1557 - 1562
  • [23] Contact line instability of gravity driven thin films flowing down an inclined plane with wall slippage
    Ma, Chicheng
    Liu, Jianlin
    Xie, Shilin
    Liu, Yongqi
    CHEMICAL ENGINEERING SCIENCE, 2020, 214
  • [24] Gravity-driven instability of a thin liquid film underneath a soft solid
    Lee, S. H.
    Maki, K. L.
    Flath, D.
    Weinstein, S. J.
    Kealey, C.
    Li, W.
    Talbot, C.
    Kumar, S.
    PHYSICAL REVIEW E, 2014, 90 (05):
  • [25] Gravity-driven thin-film flow on a flexible substrate
    Howell, P. D.
    Robinson, J.
    Stone, H. A.
    JOURNAL OF FLUID MECHANICS, 2013, 732 : 190 - 213
  • [26] Gravity-driven thin-film flow on a flexible substrate
    Howell, P.D.
    Robinson, J.
    Stone, H.A.
    Journal of Fluid Mechanics, 2013, 732 : 190 - 213
  • [27] Gravity-driven thin-film flow on a flexible substrate
    Howell, P.D.
    Robinson, J.
    Stone, H.A.
    Journal of Fluid Mechanics, 2013, 732 : 190 - 213
  • [28] Steady three-dimensional patterns in gravity-driven film flow down an inclined sinusoidal bottom contour
    Al-Shamaa, B.
    Kahraman, T.
    Wierschem, A.
    PHYSICS OF FLUIDS, 2023, 35 (03)
  • [29] Experimental investigation of gravity-driven film flow inside an inclined corrugated pipe
    Kuehner, Joel P.
    Mitchell, Jared D.
    Lee, Margaret R.
    PHYSICS OF FLUIDS, 2019, 31 (12)
  • [30] Flow Analysis of Multilayer Gravity-Driven Sisko Fluid over a Flat Inclined Plane
    Chaudhuri, Sumanta
    Chakraborty, Paromita
    Das, Bitanjaya
    Singh, Ram Karan
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2019, 44 (09) : 8081 - 8093