ITERATED ABSOLUTE VALUES OF DIFFERENCES OF CONSECUTIVE PRIMES

被引:13
作者
ODLYZKO, AM
机构
关键词
D O I
10.2307/2152962
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let d0(n) = p(n), the nth prime, for n greater-than-or-equal-to 1, and let d(k+1)(n) = \d(k)(n) - d(k)(n + 1)\ for k greater-than-or-equal-to 0, n greater-than-or-equal-to 1. A well-known conjecture usually ascribed to Gilbreath but actually due to Proth in the 19th century, says that d(k)(1) = 1 for all k greater-than-or-equal-to 1. This paper reports on a computation that verified this conjecture for k less-than-or-equal-to pi(10(13)) almost-equal-to 3 x 10(11). It also discusses the evidence and the heuristics about this conjecture. It is very likely that similar conjectures are also valid for many other integer sequences.
引用
收藏
页码:373 / 380
页数:8
相关论文
共 20 条
  • [1] Bays C., 1977, BIT (Nordisk Tidskrift for Informationsbehandling), V17, P121, DOI 10.1007/BF01932283
  • [2] AN INCREMENTAL PRIMAL SIEVE
    BENGELLOUN, SA
    [J]. ACTA INFORMATICA, 1986, 23 (02) : 119 - 125
  • [3] BRENT RP, 1980, MATH COMPUT, V35, P1435, DOI 10.1090/S0025-5718-1980-0583521-6
  • [4] BRENT RP, 1973, MATH COMPUT, V27, P959, DOI 10.1090/S0025-5718-1973-0330021-0
  • [5] Cramer H., 1936, ACTA ARITH, V2, P23, DOI DOI 10.4064/AA-2-1-23-46
  • [6] DISTRIBUTION OF PRIMES IN SHORT INTERVALS
    GALLAGHER, PX
    [J]. MATHEMATIKA, 1976, 23 (45) : 4 - 9
  • [7] Guy RK., 1981, UNSOLVED PROBLEMS NU
  • [8] Killgrove R. B., 1959, MATH TABLES AIDS COM, V13, P121
  • [9] MAIER H, 1985, MICH MATH J, V32, P221
  • [10] ON THE DIFFERENCE BETWEEN CONSECUTIVE PRIMES
    MOZZOCHI, CJ
    [J]. JOURNAL OF NUMBER THEORY, 1986, 24 (02) : 181 - 187