ON THE TOPOLOGICAL-DEGREE FOR MAPPINGS OF MONOTONE TYPE

被引:32
作者
BERKOVITS, J
MUSTONEN, V
机构
关键词
D O I
10.1016/0362-546X(86)90108-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1373 / 1383
页数:11
相关论文
共 9 条
[1]   UNIQUENESS OF TOPOLOGICAL DEGREE [J].
AMANN, H ;
WEISS, SA .
MATHEMATISCHE ZEITSCHRIFT, 1973, 130 (01) :39-54
[2]  
BERKOVITS J, THESIS U OULU
[3]   DEGREE OF MAPPING FOR NON-LINEAR MAPPINGS OF MONOTONE TYPE - STRONGLY NON-LINEAR MAPPING [J].
BROWDER, FE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1983, 80 (08) :2408-2409
[4]   DEGREE OF MAPPING FOR NON-LINEAR MAPPINGS OF MONOTONE TYPE [J].
BROWDER, FE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1983, 80 (06) :1771-1773
[5]   DEGREE OF MAPPING FOR NON-LINEAR MAPPINGS OF MONOTONE TYPE - DENSELY DEFINED MAPPING [J].
BROWDER, FE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1983, 80 (08) :2405-2407
[6]   NONLINEAR FUNCTIONAL EQUATIONS IN BANACH SPACES AND ELLIPTIC SUPER-REGULARIZATION [J].
BROWDER, FE ;
TON, BA .
MATHEMATISCHE ZEITSCHRIFT, 1968, 105 (03) :177-&
[7]  
BROWN CE, 1983, CRIT REV BIOMED ENG, V9, P1
[8]   ON PSEUDO-MONOTONE OPERATORS AND NON-LINEAR NON-COERCIVE VARIATIONAL-PROBLEMS ON UNBOUNDED-DOMAINS [J].
LANDES, R ;
MUSTONEN, V .
MATHEMATISCHE ANNALEN, 1980, 248 (03) :241-246
[9]   MONOTONOUS OPERATORS WITH PERTURBATIONS [J].
WILLE, F .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1972, 46 (05) :369-&