ON A RIEMANN SOLVER FOR THREE-DIMENSIONAL RANS

被引:0
作者
Chuvakhov, Pavel Vladimirovich [1 ,2 ]
机构
[1] Cent Aerohydromynam Inst, 1 Zhukovskogo Str, Zhukovskii 140180, Moscos Reg, Russia
[2] Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Reg, Russia
来源
COMPUTATIONAL THERMAL SCIENCES | 2014年 / 6卷 / 05期
关键词
Roe flux differencing scheme; eigenvalues; eigenvectors; Riemann problem; generalized coordinates; Reynolds averaged Navier-Stokes equations; RANS; 3D; turbulence; turbulent boundary layer; convergence; stability; computational fluid dynamics;
D O I
10.1615/ComputThermalScien.2014010968
中图分类号
O414.1 [热力学];
学科分类号
摘要
The exact analytical expression for a system of both eigenvalues and right/left eigenvectors of a Jacobian matrix for the inviscid part of a two-equations differential closure 3D RANS operator split along a curvilinear coordinate is derived. Two CFD problems are considered, namely, supersonic flow over a flat plate and supersonic flow over a compression corner with separation. It is shown that application of the exact system of eigenvalues and eigenvectors to realization of the Roe approach for approximate solution of Riemann problem results in increase in convergence rate, better stability, and higher accuracy of a steady-state solution in comparison with those in the case of an approximate system.
引用
收藏
页码:369 / 381
页数:13
相关论文
共 25 条
[1]  
BABAYEV IY, 1994, COMP MATH MATH PHYS+, V34, P1455
[2]  
Bashkin V., 2012, CHISLENNOE MODELIROV
[3]  
Chuvakhov P, 2014, MATH MATH PHYS, V54, P135
[4]   Direct numerical simulation of disturbances generated by periodic suction-blowing in a hypersonic boundary layer [J].
Egorov, IV ;
Fedorov, AV ;
Soudakov, VG .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2006, 20 (01) :41-54
[5]  
EULDERINK F, 1995, ASTRON ASTROPHYS SUP, V110, P587
[6]  
Godunov S., 1976, KONECHNO RAZNOSTNY M
[7]  
Godunov SK., 1959, MAT SB, V47, P271
[8]   HIGH-RESOLUTION SCHEMES FOR HYPERBOLIC CONSERVATION-LAWS [J].
HARTEN, A .
JOURNAL OF COMPUTATIONAL PHYSICS, 1983, 49 (03) :357-393
[9]   A HIGH-ACCURACY VERSION OF GODUNOVS IMPLICIT SCHEME FOR INTEGRATING THE NAVIER-STOKES EQUATIONS [J].
IVANOV, MY ;
KRUPA, VG ;
NIGMATULLIN, RZ .
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1989, 29 (03) :170-179
[10]  
KARIMOV TK, 1983, DOKL AKAD NAUK SSSR+, V269, P1038