D-BAR DRESSING AND SATO THEORY

被引:8
作者
CARROLL, R [1 ]
KONOPELCHENKO, B [1 ]
机构
[1] ACAD SCI NOVOSIBIRSK,INST NUCL PHYS,NOVOSIBIRSK 630090,RUSSIA
关键词
D O I
10.1007/BF00761499
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown how Sato hierarchies can be developed within the context of D bar dressing. A new derivation of a general Hirota bilinear identity is given via D bar dressing and one shows how the resulting formulas lead to canonical hierarchy structure in the 2 x 2 multicomponent KP situation, with explicit formulas for the entries. Variations, generalizations, and extensions are indicated.
引用
收藏
页码:307 / 319
页数:13
相关论文
共 38 条
[1]  
Ablowitz M. J., 1991, SOLITONS NONLINEAR E, V149
[2]  
BEALS R, 1985, P SYMP PURE MATH, V43, P45
[3]   LINEAR SPECTRAL PROBLEMS, NON-LINEAR EQUATIONS AND THE DELTA-BAR-METHOD [J].
BEALS, R ;
COIFMAN, RR .
INVERSE PROBLEMS, 1989, 5 (02) :87-130
[4]   THE D-BAR APPROACH TO INVERSE SCATTERING AND NONLINEAR EVOLUTIONS [J].
BEALS, R ;
COIFMAN, RR .
PHYSICA D-NONLINEAR PHENOMENA, 1986, 18 (1-3) :242-249
[5]  
BERGVELT M, 1992, PARTITIONS VERTEX OP
[6]   PI-FUNCTIONS AND ZERO CURVATURE EQUATIONS OF TODA-AKNS TYPE [J].
BERGVELT, MJ ;
TENKROODE, APE .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (06) :1308-1320
[7]   THE NON-LOCAL PARTIAL-DIFFERENTIAL-EQUATION PROBLEM AND (2+1)-DIMENSIONAL SOLITON-EQUATIONS [J].
BOGDANOV, LV ;
MANAKOV, SV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (10) :L537-L544
[8]   MULTIDIMENSIONAL SOLITONS AND THEIR SPECTRAL-TRANSFORMS [J].
BOITI, M ;
LEON, JP ;
PEMPINELLI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2612-2618
[9]   SPECTRAL TRANSFORM AND ORTHOGONALITY RELATIONS FOR THE KADOMTSEV-PETVIASHVILI-I EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1989, 141 (3-4) :96-100
[10]   A NEW SPECTRAL TRANSFORM FOR THE DAVEY-STEWARTSON-I EQUATION [J].
BOITI, M ;
LEON, JJP ;
PEMPINELLI, F .
PHYSICS LETTERS A, 1989, 141 (3-4) :101-107