LIE-ALGEBRA OF ANOMALOUSLY SCALED FLUCTUATIONS

被引:10
作者
BROIDIOI, M
MOMONT, B
VERBEURE, A
机构
[1] Instituut voor Theoretische Fysica, K.U.Leuven, B-3001 Leuven
关键词
D O I
10.1063/1.531343
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For quantum lattice systems, it is proven that anomalously scaled fluctuations have a natural Lie algebra structure. The harmonic lattice in the ground state is given as an illustration of the general theorem. (C) 1995 American Institute of Physics.
引用
收藏
页码:6746 / 6757
页数:12
相关论文
共 28 条
[1]  
[Anonymous], 1992, THEORY CRITICAL PHEN
[2]  
Bratteli O., 1979, OPERATOR ALGEBRAS QU, VI
[3]  
BROIDIOI M, 1993, HELV PHYS ACTA, V66, P155
[4]   CRITICAL EXPONENTS IN THE IMPERFECT AND THE FREE BOSE-GAS [J].
BROIDIOI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (05) :2357-2370
[5]  
BROIDIOI M, IN PRESS COMMUN MATH
[6]  
BROIDIOI M, 1995, THESIS K U LEUVEN
[7]   CONTRACTION OF LIE-ALGEBRA REPRESENTATIONS [J].
CATTANEO, U ;
WRESZINSKI, W .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (01) :83-90
[8]   3-DIMENSIONAL QUANTUM GROUPS FROM CONTRACTIONS OF SU(2)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (11) :2548-2551
[9]   THEORY OF QUANTUM FLUCTUATIONS AND THE ONSAGER RELATIONS [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (5-6) :721-746
[10]   ABOUT THE EXACTNESS OF THE LINEAR RESPONSE THEORY [J].
GODERIS, D ;
VERBEURE, A ;
VETS, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (02) :265-283