Semiparametric Bayesian inference for repeated fractional measurement data

被引:0
作者
Yang, Ying [1 ]
Muller, Peter [2 ]
Rosner, Gary L. [3 ]
机构
[1] Bristol Myers Squibb Co, Plainsboro, NJ 08536 USA
[2] Univ Texas MD Anderson Canc Ctr, Dept Biostat & Appl Math, 1515 Holcombe Blvd, Houston, TX 77030 USA
[3] Johns Hopkins Univ, Div Oncol Biostat, Baltimore, MD 21205 USA
来源
CHILEAN JOURNAL OF STATISTICS | 2010年 / 1卷 / 01期
关键词
Fractional data; Linear mixed model; MCMC algorithm; Polya tree; Repeated measurement data; Semiparametric Bayesian inference;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss inference for repeated fractional data, with outcomes between 0 to 1, including positive probability masses on 0 and 1. The point masses at the boundaries prevent the routine use of logit and other commonly used transformations of (0, 1) data. We introduce a model augmentation with latent variables that allow for the desired positive probability at 0 and 1 in the model. A linear mixed effect model is imposed on the latent variables. We propose a Bayesian semiparametric model for the random effects distribution. Specifically, we use a Polya tree prior for the unknown random effects distribution. The proposed model can capture possible multimodality and skewness of random effect distribution. We discuss implementation of posterior inference by Markov chain Monte Carlo simulation. The proposed model is illustrated by a simulation study and a cancer study in dogs.
引用
收藏
页码:59 / 74
页数:16
相关论文
共 25 条
[1]   BAYESIAN-ANALYSIS OF BINARY AND POLYCHOTOMOUS RESPONSE DATA [J].
ALBERT, JH ;
CHIB, S .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (422) :669-679
[2]   MIXTURES OF DIRICHLET PROCESSES WITH APPLICATIONS TO BAYESIAN NONPARAMETRIC PROBLEMS [J].
ANTONIAK, CE .
ANNALS OF STATISTICS, 1974, 2 (06) :1152-1174
[3]  
Bernardo J. M., 2009, BAYESIAN THEORY, V405
[4]  
Dubins L. E., 1966, P 5 BERK S MATH STAT, V2, P183
[5]   BAYESIAN DENSITY-ESTIMATION AND INFERENCE USING MIXTURES [J].
ESCOBAR, MD ;
WEST, M .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1995, 90 (430) :577-588
[6]   BAYESIAN ANALYSIS OF SOME NONPARAMETRIC PROBLEMS [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1973, 1 (02) :209-230
[7]   PRIOR DISTRIBUTIONS ON SPACES OF PROBABILITY MEASURES [J].
FERGUSON, TS .
ANNALS OF STATISTICS, 1974, 2 (04) :615-629
[8]   ILLUSTRATION OF BAYESIAN-INFERENCE IN NORMAL DATA MODELS USING GIBBS SAMPLING [J].
GELFAND, AE ;
HILLS, SE ;
RACINEPOON, A ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) :972-985
[9]  
Geweke J., 1992, BAYESIAN STAT, V4, P169, DOI DOI 10.21034/SR.148
[10]   RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA USING GIBBS SAMPLING [J].
GILKS, WR ;
WANG, CC ;
YVONNET, B ;
COURSAGET, P .
BIOMETRICS, 1993, 49 (02) :441-453