NEW INTEGRAL-REPRESENTATIONS FOR BERNOULLI AND EULER POLYNOMIALS

被引:4
作者
HARUKI, H [1 ]
RASSIAS, TM [1 ]
机构
[1] UNIV LA VERNE,DEPT MATH,GR-14510 KIFISIA,GREECE
关键词
D O I
10.1006/jmaa.1993.1153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to prove new integral represenlations for Bernoulli and Euler polynomials and to give two applications of our result. To prove our main result we use the functional equation [formula] Although similar functional equations have been studied before in the literature, the one above is new. © 1993 Academic Press, Inc.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 11 条
[1]  
Aczel J, 1989, FUNCTIONAL EQUATIONS
[2]   ANOTHER ELEMENTARY PROOF OF EULERS FORMULA FOR ZETA (2N) [J].
APOSTOL, TM .
AMERICAN MATHEMATICAL MONTHLY, 1973, 80 (04) :425-431
[3]  
BEESLEY EM, 1969, AM MATH MONTHLY, P389
[4]  
Edwards J., 1922, TREATISE INTEGRAL CA, VVolume II
[5]   EULERS INTEGRALS [J].
HARUKI, H ;
HARUKI, S .
AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (07) :464-466
[6]   DEFINITIONS OF BERNOULLI POLYNOMIALS USING MULTIPLICATION THEOREMS [J].
KAIRIES, HH .
MANUSCRIPTA MATHEMATICA, 1973, 8 (04) :363-369
[7]  
Kuczma M., 1990, ITERATIVE FUNCTIONAL
[8]   A NEW APPROACH TO BERNOULLI POLYNOMIALS [J].
LEHMER, DH .
AMERICAN MATHEMATICAL MONTHLY, 1988, 95 (10) :905-911
[9]  
MILOVANOVIC GV, IN PRESS TOPICS POLY
[10]  
Titchmarsh E C, 1932, THEORY FUNCTIONS