GRADIENT ESTIMATES ON MANIFOLDS USING COUPLING

被引:81
作者
CRANSTON, M
机构
关键词
D O I
10.1016/0022-1236(91)90054-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use a coupling method to give gradient estimates for solutions to ( 1 2 Δ + Z)u = 0 on a manifold. The size of the gradient depends on a lower bound on the Ricci curvature of the manifold and bounds on the vector field Z. © 1991.
引用
收藏
页码:110 / 124
页数:15
相关论文
共 12 条
[1]  
CHEEGER J, 1975, COMPARISON THEOREMS
[2]  
Greene RE, 1979, FUNCTION THEORY MANI
[3]  
HSU, 1989, DISTANCE FUNCTION RI
[4]  
Ikeda N., 1981, STOCHASTIC DIFFERENT
[5]  
Kendall W. S., 1986, Stochastics, V19, P111, DOI 10.1080/17442508608833419
[6]   COUPLED BROWNIAN MOTIONS AND PARTIAL DOMAIN MONOTONICITY FOR THE NEUMANN HEAT KERNEL [J].
KENDALL, WS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (02) :226-236
[7]  
KENDALL WS, 1986, J LOND MATH SOC, V33, P554
[8]   COUPLING OF MULTIDIMENSIONAL DIFFUSIONS BY REFLECTION [J].
LINDVALL, T ;
ROGERS, LCG .
ANNALS OF PROBABILITY, 1986, 14 (03) :860-872
[9]  
LYONS T, 1984, J DIFFER GEOM, V19, P299
[10]   ASYMPTOTIC OF GREENS FUNCTION OF A RIEMANNIAN MANIFOLD AND ITOS STOCHASTIC INTEGRALS [J].
MALLIAVIN, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (02) :381-383