NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER CONTROL SYSTEM

被引:0
|
作者
Cai, X. [1 ,3 ]
Liu, F. [1 ,2 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Queensland Univ Technol, Sch Math Sci, Brisbane, Qld 4001, Australia
[3] Jimei Univ, Dept Math, Xiamen 361021, Fujian, Peoples R China
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Multi-term; fractional control system; Caputo derivative; numerical approximation; consistence; convergence; stability;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Multi-term fractional differential equations have been used to simulate fractional-order control system. It has been demonstrated the necessity of the such controllers for the more efficient control of fractional-order dynamical system. In this paper, the multi-term fractional ordinary differential equations are transferred into equivalent a system of equations. The existence and uniqueness of the new system are proved. A fractional order difference approximation is constructed by a decoupled technique and fractional-order numerical techniques. The consistence, convergence and stability of the numerical approximation are proved. Finally, some numerical results are presented to demonstrate that the numerical approximation is a computationally efficient method. The new method can be applied to solve the fractional-order control system.
引用
收藏
页码:229 / 241
页数:13
相关论文
共 50 条
  • [1] Numerical simulation of the fractional-order control system
    Cai X.
    Liu F.
    J. Appl. Math. Comp., 2007, 1-2 (229-241): : 229 - 241
  • [2] Numerical Analysis, Circuit Simulation, and Control Synchronization of Fractional-Order Unified Chaotic System
    Li, Guohui
    Zhang, Xiangyu
    Yang, Hong
    MATHEMATICS, 2019, 7 (11)
  • [3] Numerical simulation for fractional-order differential system of a Glioblastoma Multiforme and Immune system
    M. M. Al-Shomrani
    M. A. Abdelkawy
    Advances in Difference Equations, 2020
  • [4] Numerical simulation for fractional-order differential system of a Glioblastoma Multiforme and Immune system
    Al-Shomrani, M. M.
    Abdelkawy, M. A.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [5] Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system
    Yuhong Tang
    Min Xiao
    Guoping Jiang
    Jinxing Lin
    Jinde Cao
    Wei Xing Zheng
    Nonlinear Dynamics, 2017, 90 : 2185 - 2198
  • [6] Fractional-order PD control at Hopf bifurcations in a fractional-order congestion control system
    Tang, Yuhong
    Xiao, Min
    Jiang, Guoping
    Lin, Jinxing
    Cao, Jinde
    Zheng, Wei Xing
    NONLINEAR DYNAMICS, 2017, 90 (03) : 2185 - 2198
  • [7] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    He, Shaobo
    Sun, Kehui
    Mei, Xiaoyong
    Yan, Bo
    Xu, Siwei
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):
  • [8] Numerical analysis of a fractional-order chaotic system based on conformable fractional-order derivative
    Shaobo He
    Kehui Sun
    Xiaoyong Mei
    Bo Yan
    Siwei Xu
    The European Physical Journal Plus, 132
  • [9] Fractional-order Iterative Learning Control and Identification for Fractional-order Hammerstein System
    Li, Yan
    Zhai, Lun
    Chen, YangQuan
    Ahn, Hyo-Sung
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 840 - 845
  • [10] Fractional-Order Adaptive Backstepping Control of a Noncommensurate Fractional-Order Ferroresonance System
    Wang, Yan
    Liu, Ling
    Liu, Chongxin
    Zhu, Ziwei
    Sun, Zhenquan
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2018, 2018