Minimum distance estimators of the Pickands dependence function and related tests of multivariate extreme-value dependence

被引:0
作者
Berghaus, Betina [1 ]
Buecher, Axel [1 ]
Dette, Holger [1 ]
机构
[1] Ruhr Univ Bochum, Fak Mathemat, D-44780 Bochum, Germany
来源
JOURNAL OF THE SFDS | 2013年 / 154卷 / 01期
关键词
Extreme-value copula; minimum distance estimation; Pickands dependence function; weak convergence; empirical copula process;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of estimating the Pickands dependence function corresponding to a multivariate extreme-value distribution. A minimum distance estimator is proposed which is based on an L-2-distance between the logarithms of the empirical and the unknown extreme-value copula. The minimizer can be expressed explicitly as a linear functional of the logarithm of the empirical copula and weak convergence of the corresponding process on the simplex is proved. In contrast to other procedures which have recently been proposed in the literature for the nonparametric estimation of a multivariate Pickands dependence function (see [Zhang et al., 2008] and [Gudendorf and Segers, 2011]), the estimators constructed in this paper do not require knowledge of the marginal distributions and are an alternative to the method which has recently been suggested in [Gudendorf and Segers, 2012]. Moreover, the minimum distance approach allows the construction of a simple test for the hypothesis of a multivariate extreme-value copula, which is consistent against a broad class of alternatives. The finite-sample properties of the estimator and a multiplier bootstrap version of the test are investigated by means of a simulation study.
引用
收藏
页码:116 / 137
页数:22
相关论文
共 47 条
[1]  
Beirlant J., 2004, WILEY SERIES PROBABI
[2]   On the Ghoudi, Khoudraji, and Rivest test for extreme-value dependence [J].
Ben Ghorbal, Noomen ;
Genest, Christian ;
Neslehova, Johanna .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04) :534-552
[3]   Empirical and sequential empirical copula processes under serial dependence [J].
Buecher, Axel ;
Volgushev, Stanislav .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 119 :61-70
[4]   Consistent testing for a constant copula under strong mixing based on the tapered block multiplier technique [J].
Buecher, Axel ;
Ruppert, Martin .
JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 :208-229
[5]   NEW ESTIMATORS OF THE PICKANDS DEPENDENCE FUNCTION AND A TEST FOR EXTREME-VALUE DEPENDENCE [J].
Buecher, Axel ;
Dette, Holger ;
Volgushev, Stanislav .
ANNALS OF STATISTICS, 2011, 39 (04) :1963-2006
[6]   A note on bootstrap approximations for the empirical copula process [J].
Buecher, Axel ;
Dette, Holger .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (23-24) :1925-1932
[7]   A nonparametric estimation procedure for bivariate extreme value copulas [J].
Caperaa, P ;
Fougeres, AL ;
Genest, C .
BIOMETRIKA, 1997, 84 (03) :567-577
[8]  
Cebrian A. C., 2003, BELG ACTUAR B, V3, P33
[9]  
Coles S., 1999, EXTREMES, V2, P339, DOI [DOI 10.1023/A:1009963131610, 10.1023/A:1009963131610]
[10]   GENERALIZED BURR-PARETO-LOGISTIC DISTRIBUTIONS WITH APPLICATIONS TO A URANIUM EXPLORATION DATA SET [J].
COOK, RD ;
JOHNSON, ME .
TECHNOMETRICS, 1986, 28 (02) :123-131