NULL-KILLING VECTOR DIMENSIONAL REDUCTION AND GALILEAN GEOMETRODYNAMICS

被引:104
作者
JULIA, B [1 ]
NICOLAI, H [1 ]
机构
[1] HAMBURG UNIV,INST THEORET PHYS 2,D-22761 HAMBURG,GERMANY
关键词
D O I
10.1016/0550-3213(94)00584-2
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The solutions of Einstein's equations admitting one non-null Killing vector field are best studied with the projection formalism of Geroch. When the Killing vector is lightlike, the projection onto the orbit space still exists and one expects a covariant theory with degenerate contravariant metric to appear, its geometry is presented here. Despite the complications of indecomposable representations of the local Euclidean subgroup, one obtains an absolute time and a canonical, Galilean and so-called Newtonian, torsionless connection. The quasi-Maxwell field (Kaluza Klein one-form) that appears in the dimensional reduction is a non-separable part of this affine connection, in contrast to the reduction with a non-null Killing vector. One may define the Kaluza Klein scalar (dilaton) together with the absolute time coordinate after having imposed one of the equations of motion in order to prevent the emergence of torsion. We present a detailed analysis of the dimensional reduction using moving frames, we derive the complete equations of motion and propose an action whose variation gives rise to all but one of them. Hidden symmetries are shown to act on the space of solutions.
引用
收藏
页码:291 / 323
页数:33
相关论文
共 28 条
[1]  
BEL L, 1990, RECENT DEVELOPMENTS IN GRAVITATION, P47
[2]   On Riemann spaces conformal to Euclidean space [J].
Brinkmann, HW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1923, 9 :1-3
[3]   UNIQUENESS OF NEWTONIAN THEORY AS A GEOMETRIC THEORY OF GRAVITATION [J].
DIXON, WG .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 45 (02) :167-182
[4]  
Dombrowski HD, 1964, NACHR AKAD WISS G MP, P233
[5]   BARGMANN STRUCTURES AND NEWTON-CARTAN THEORY [J].
DUVAL, C ;
BURDET, G ;
KUNZLE, HP ;
PERRIN, M .
PHYSICAL REVIEW D, 1985, 31 (08) :1841-1853
[6]   CELESTIAL MECHANICS, CONFORMAL STRUCTURES, AND GRAVITATIONAL-WAVES [J].
DUVAL, C ;
GIBBONS, G ;
HORVATHY, P .
PHYSICAL REVIEW D, 1991, 43 (12) :3907-3922
[7]  
Ehlers J, 1981, GRUNDLAGENPROBLEME M, P65
[8]  
Friedrichs K., 1927, MATH ANN, V98, P566
[9]   METHOD FOR GENERATING SOLUTIONS OF EINSTEINS EQUATIONS [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1971, 12 (06) :918-&
[10]   METHOD FOR GENERATING NEW SOLUTIONS OF EINSTEINS EQUATION .2. [J].
GEROCH, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (03) :394-&