Existence and numerical approximation of periodic motions of an infinite lattice of particles

被引:18
作者
Arioli, G [1 ]
Gazzola, F [1 ]
机构
[1] DIPARTIMENTO SCI TA,I-15100 ALESSANDRIA,ITALY
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1995年 / 46卷 / 06期
关键词
D O I
10.1007/BF00917876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the existence of periodic motions of an infinite lattice of particles: the proof involves the study of periodic motions for finite lattices by a linking technique and the passage to the limit by means of Lions' concentration-compactness principle. We also give a numerical picture of the motion of some finite lattices and of the way the solutions for finite lattices approach the solution for the infinite lattice by a technique developed by Choi and McKenna [6].
引用
收藏
页码:898 / 912
页数:15
相关论文
共 12 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
ARIOLI G, IN PRESS NONLINEAR A
[3]  
ARIOLI G, IN PRESS MATH Z
[4]   CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS [J].
BENCI, V ;
RABINOWITZ, PH .
INVENTIONES MATHEMATICAE, 1979, 52 (03) :241-273
[5]  
BENCI V, 1992, CR ACAD SCI I-MATH, V315, P583
[6]   A MOUNTAIN PASS METHOD FOR THE NUMERICAL-SOLUTION OF SEMILINEAR ELLIPTIC PROBLEMS [J].
CHOI, YS ;
MCKENNA, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 20 (04) :417-437
[7]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P109
[8]  
RABINOWITZ PH, 1978, ANN SC NORM SUP PISA, V4, P215
[9]   ON PERIODIC MOTIONS OF LATTICES OF TODA TYPE VIA CRITICAL-POINT THEORY [J].
RUF, B ;
SRIKANTH, PN .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1994, 126 (04) :369-385
[10]   HOMOCLINIC ORBITS IN A 1ST ORDER SUPERQUADRATIC HAMILTONIAN SYSTEM - CONVERGENCE OF SUBHARMONIC ORBITS [J].
TANAKA, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 94 (02) :315-339