SPARSE REGULARIZATION FOR BI-LEVEL VARIABLE SELECTION

被引:3
作者
Matsui, Hidetoshi [1 ]
机构
[1] Kyushu Univ, Fac Math, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
来源
JOURNAL JAPANESE SOCIETY OF COMPUTATIONAL STATISTICS | 2015年 / 28卷 / 01期
关键词
Composite penalty; Lasso; Variable selection;
D O I
10.5183/jjscs.1502001_216
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Sparse regularization provides solutions in which some parameters are exactly zero and therefore they can be used for selecting variables in regression models and so on. The lasso is proposed as a method for selecting individual variables for regression models. On the other hand, the group lasso selects groups of variables rather than individuals and therefore it has been used in various fields of applications. More recently, penalties that select variables at both the group and individual levels has been considered. They are so called bi-level selection. In this paper we focus on some penalties that aim for bi-level selection. We overview these penalties and estimation algorithms, and then compare the effectiveness of these penalties from the viewpoint of accuracy of prediction and selection of variables and groups through simulation studies.
引用
收藏
页码:83 / 103
页数:21
相关论文
共 64 条
  • [1] Estimation of a sparse group of sparse vectors
    Abramovich, Felix
    Grinshtein, Vadim
    [J]. BIOMETRIKA, 2013, 100 (02) : 355 - 370
  • [2] NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION
    AKAIKE, H
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) : 716 - 723
  • [3] Structured Sparsity through Convex Optimization
    Bach, Francis
    Jenatton, Rodolphe
    Mairal, Julien
    Obozinski, Guillaume
    [J]. STATISTICAL SCIENCE, 2012, 27 (04) : 450 - 468
  • [4] Bach FR, 2008, J MACH LEARN RES, V9, P1179
  • [5] A LASSO FOR HIERARCHICAL INTERACTIONS
    Bien, Jacob
    Taylor, Jonathan
    Tibshirani, Robert
    [J]. ANNALS OF STATISTICS, 2013, 41 (03) : 1111 - 1141
  • [6] Boyd S, 2011, TRENDS MACH LEARN, V3, P1, DOI DOI 10.1561/2200000016
  • [7] The Group Exponential Lasso for Bi-Level Variable Selection
    Breheny, Patrick
    [J]. BIOMETRICS, 2015, 71 (03) : 731 - 740
  • [8] Breheny P, 2009, STAT INTERFACE, V2, P369
  • [9] Buhlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
  • [10] Chatterjee S., 2012, P 2012 SIAM INT C DA, P47, DOI DOI 10.1137/1.9781611972825.5