ON THE NUMBER OF RATIONAL-POINTS ON CODIMENSION-1 ALGEBRAIC-SETS IN P-N(F-Q)

被引:14
作者
SORENSEN, AB [1 ]
机构
[1] NR NISSUM SEMINARIUM,DK-7620 LEMVIG,DENMARK
关键词
D O I
10.1016/0012-365X(93)E0009-S
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An upper bound on the number of F-q-rational points on a pure (n - 1)-dimensional algebraic set of low degree defined over F-q in P-n(F-q) is given, using simple counting arguments, and the result is generalized to all degrees using results from coding theory. The bound depends on n, q, d, where d is the degree of the algebraic set. A number of corollaries are deduced and applications to coding theory are mentioned.
引用
收藏
页码:321 / 334
页数:14
相关论文
共 7 条
[1]  
Blake IF., 1975, MATH THEORY CODING
[2]   ON GENERALIZED REED-MULLER CODES AND THEIR RELATIVES [J].
DELSARTE, P ;
GOETHALS, JM ;
MACWILLI.FJ .
INFORMATION AND CONTROL, 1970, 16 (05) :403-&
[3]  
Hirschfeld JWP, 1998, PROJECTIVE GEOMETRIE, V2nd
[4]  
Koblitz Neal, 1984, GRADUATE TEXTS MATH, V58
[5]  
SERRE JP, 1983, CR ACAD SCI PARIS SE, V1, P397
[6]   PROJECTIVE REED-MULLER CODES [J].
SORENSEN, AB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) :1567-1576
[7]  
Weil A., 1948, VARIETES ABELIENNES