INTEGRABILITY OF HAMILTONIANS ASSOCIATED WITH FOKKER-PLANCK EQUATIONS

被引:57
|
作者
GRAHAM, R [1 ]
ROEKAERTS, D [1 ]
TEL, T [1 ]
机构
[1] CATHOLIC UNIV LEUVEN,INST THEORET FYS,B-3030 HEVERLE,BELGIUM
来源
PHYSICAL REVIEW A | 1985年 / 31卷 / 05期
关键词
D O I
10.1103/PhysRevA.31.3364
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:3364 / 3375
页数:12
相关论文
共 50 条
  • [1] Classical integrability for beta-ensembles and general Fokker-Planck equations
    Rumanov, Igor
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (01)
  • [2] Fokker-Planck approach to quantum lattice Hamiltonians
    Jimenez, F
    Sierra, G
    NUCLEAR PHYSICS B, 1996, 458 (03) : 640 - 668
  • [3] Invariants of Fokker-Planck equations
    Sumiyoshi Abe
    The European Physical Journal Special Topics, 2017, 226 : 529 - 532
  • [4] Invariants of Fokker-Planck equations
    Abe, Sumiyoshi
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2017, 226 (03): : 529 - 532
  • [5] Deformed fokker-planck equations
    Ho, Choon-Lin
    Sasaki, Ryu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (04): : 667 - 674
  • [6] GEOMETRIC FOKKER-PLANCK EQUATIONS
    Lebeau, Gilles
    PORTUGALIAE MATHEMATICA, 2005, 62 (04) : 469 - 530
  • [7] A note on stochastic semilinear equations and their associated Fokker-Planck equations
    Roeckner, Michael
    Zhu, Rongchan
    Zhu, Xiangchan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 415 (01) : 83 - 109
  • [8] φ-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations
    Dolbeault, Jean
    Li, Xingyu
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (13): : 2637 - 2666
  • [9] Random Walks Associated with Nonlinear Fokker-Planck Equations
    Mendes, Renio dos Santos
    Lenzi, Ervin Kaminski
    Malacarne, Luis Carlos
    Picoli, Sergio
    Jauregui, Max
    ENTROPY, 2017, 19 (04)
  • [10] Nonlocal Approximations to Fokker-Planck Equations
    Molino, Alexis
    Rossi, Julio D.
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2019, 62 (01): : 35 - 60