Semantic analysis on faces using deep neural networks

被引:0
作者
Federico Pellejero, Nicolas [1 ]
Grinblat, Guillermo
Uzal, Lucas [2 ]
机构
[1] Fac Ciencias Exactas Ingn & Agrimensura, Rosario, Argentina
[2] CIFASIS CONICET, Rosario, Argentina
来源
INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE | 2018年 / 21卷 / 61期
关键词
Deep; Learning; Emotion; Recognition;
D O I
10.4114/intartif.vol21iss61pp14-29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we address the problem of automatic emotion recognition and classification through video. Nowadays there are excellent results focused on lab-made datasets, with posed facial expressions. On the other hand there is room for a lot of improvement in the case of 'in the wild' datasets, where light, face angle to the camera, etc. are taken into account. In these cases it could be very harmful to work with a small dataset. Currently, there are not big enough datasets of adequately labeled faces for the task. We use Generative Adversarial Networks in order to train models in a semi-supervised fashion, generating realistic face images in the process, allowing the exploitation of a big cumulus of unlabeled face images.
引用
收藏
页码:14 / 29
页数:16
相关论文
共 34 条
[1]  
Andrew Zisserman, 2015, Arxiv, DOI arXiv:1409.1556
[2]  
[Anonymous], 2014, OXF FOOD SEC C
[3]  
[Anonymous], 2002, OBS BAS MEAS FAC EXP
[4]  
[Anonymous], 2012, COLLECTING LARGE RIC
[5]  
Chang J, 2017, INT CONF ACOUST SPEE, P2746, DOI 10.1109/ICASSP.2017.7952656
[6]   The devil is in the details: an evaluation of recent feature encoding methods [J].
Chatfield, Ken ;
Lempitsky, Victor ;
Vedaldi, Andrea ;
Zisserman, Andrew .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2011, 2011,
[7]  
Cohn J.F., 2006, P 8 INT C MULTIMODAL, P233
[8]  
Glorot X., 2010, J MACH LEARN RES, P249, DOI DOI 10.1.1/207.2059
[9]  
Goodfellow Ian J., 2013, Neural Information Processing. 20th International Conference, ICONIP 2013. Proceedings: LNCS 8228, P117, DOI 10.1007/978-3-642-42051-1_16
[10]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144