PSEUDO-SEMISIMPLE RINGS

被引:2
作者
MOHAMED, S [1 ]
MULLER, BJ [1 ]
机构
[1] MCMASTER UNIV,DEPT MATH,HAMILTON L8S 4K1,ONTARIO,CANADA
关键词
D O I
10.2307/2044271
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:157 / 160
页数:4
相关论文
共 50 条
[21]   HOMOMETRIC ELEMENTS IN SEMISIMPLE RINGS [J].
ROSENBLATT, J ;
SHAPIRO, DB .
COMMUNICATIONS IN ALGEBRA, 1989, 17 (12) :3043-3051
[22]   Reverse mathematics and semisimple rings [J].
Wu, Huishan .
ARCHIVE FOR MATHEMATICAL LOGIC, 2022, 61 (5-6) :769-793
[23]   SEMISIMPLE MAXIMAL QUOTIENT RINGS [J].
SANDOMIERSKI, FL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 128 (01) :112-+
[24]   Reverse mathematics and semisimple rings [J].
Huishan Wu .
Archive for Mathematical Logic, 2022, 61 :769-793
[25]   Computably Enumerable Semisimple Rings [J].
Wu, Huishan .
MATHEMATICS, 2025, 13 (03)
[26]   T-SEMISIMPLE MODULES AND T-SEMISIMPLE RINGS [J].
Asgari, Sh. ;
Haghany, A. ;
Tolooei, Y. .
COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) :1882-1902
[27]   Superstability, noetherian rings and pure-semisimple rings [J].
Mazari-Armida, Marcos .
ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (03)
[28]   CHARACTERIZATION OF SEMISIMPLE RINGS AS RINGS WITH ACC AND ENOUGH PROJECTIVES [J].
BRAVY, S .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (04) :A420-A420
[29]   AXIOMATIC RADICAL AND SEMISIMPLE CLASSES OF RINGS [J].
FISHER, JR .
PACIFIC JOURNAL OF MATHEMATICS, 1981, 97 (01) :81-91
[30]   ON SEMISIMPLE CLASSES OF ASSOCIATIVE AND ALTERNATIVE RINGS [J].
PUCZYLOWSKI, ER .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1984, 27 (FEB) :1-5