THE NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM FOR HAMILTON-JACOBI EQUATIONS

被引:51
作者
BARDI, M [1 ]
OSHER, S [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT MATH,LOS ANGELES,CA 90024
关键词
HAMILTON-JACOBI EQUATIONS; VISCOSITY SOLUTIONS; RIEMANN PROBLEM; GODUNOV SCHEME; HOPF REPRESENTATION FORMULAS;
D O I
10.1137/0522022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Simple inequalities are presented for the viscosity solution of a Hamilton-Jacobi equation in N space dimension when neither the initial data nor the Hamiltonian need be convex (or concave). The initial data are uniformly Lipschitz and can be written as the sum of a convex function in a group of variables and a concave function in the remaining variables, therefore including the nonconvex Riemann problem. The inequalities become equalities wherever a "maxmin" equals a "minmax" and thus a representation formula for this problem is then obtained, generalizing the classical Hopf's formulas.
引用
收藏
页码:344 / 351
页数:8
相关论文
共 16 条
[1]   ON HOPF FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
EVANS, LC .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1984, 8 (11) :1373-1381
[2]   ON EXISTENCE AND UNIQUENESS OF SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (04) :353-370
[3]   SOME PROPERTIES OF VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
EVANS, LC ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 282 (02) :487-502
[4]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[5]  
CRANDALL MG, 1984, MATH COMPUT, V45, P1
[6]   SOME MIN-MAX METHODS FOR THE HAMILTON-JACOBI EQUATION [J].
EVANS, LC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (01) :31-50
[7]   DIFFERENTIAL-GAMES AND REPRESENTATION FORMULAS FOR SOLUTIONS OF HAMILTON-JACOBI-ISAACS EQUATIONS [J].
EVANS, LC ;
SOUGANIDIS, PE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (05) :773-797
[8]  
Godunov S K, 1959, MAT SBORNIK, V47, P271
[9]  
HOPF E, 1965, J MATH MECH, V14, P951
[10]   PERRON METHOD FOR HAMILTON-JACOBI EQUATIONS [J].
ISHII, H .
DUKE MATHEMATICAL JOURNAL, 1987, 55 (02) :369-384