WHAT CAN WE LEARN FROM HOMOCLINIC ORBITS IN CHAOTIC DYNAMICS

被引:117
作者
GASPARD, P
NICOLIS, G
机构
关键词
D O I
10.1007/BF01019496
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:499 / 518
页数:20
相关论文
共 18 条
[1]  
Afraimovich V. S., 1977, Soviet Physics - Doklady, V22, P253
[2]  
Andronov A. A., 1971, THEORY BIFURCATIONS
[3]   OSCILLATORS WITH CHAOTIC BEHAVIOR - AN ILLUSTRATION OF A THEOREM BY SHILNIKOV [J].
ARNEODO, A ;
COULLET, P ;
TRESSER, C .
JOURNAL OF STATISTICAL PHYSICS, 1982, 27 (01) :171-182
[4]  
Arnold VI, 1980, CHAPITRES SUPPLEMENT
[5]  
BAESENS C, UNPUB Z PHYSIK B
[6]  
COLLET P, 1981, ITERATIVE MAPS INTER
[7]   QUANTITATIVE UNIVERSALITY FOR A CLASS OF NON-LINEAR TRANSFORMATIONS [J].
FEIGENBAUM, MJ .
JOURNAL OF STATISTICAL PHYSICS, 1978, 19 (01) :25-52
[8]   ANALYSIS OF FLOW HYSTERESIS BY A ONE-DIMENSIONAL MAP [J].
FRASER, S ;
KAPRAL, R .
PHYSICAL REVIEW A, 1982, 25 (06) :3223-3233
[9]  
GASPARD P, 1982, MEMOIRE LICENCE
[10]  
GUCKENHEIMER J, 1980, PROGR MATH, V8