Tunneling RFID Tags for Long-Range and Low-Power Microwave Applications

被引:75
作者
Amato, Francesco [1 ,2 ]
Peterson, Christopher W. [3 ]
Degnan, Brian P. [4 ]
Durgin, Gregory D. [4 ]
机构
[1] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30332 USA
[2] St Anna Sch Adv Studies, Inst Commun Informat & Percept Technol, I-56127 Pisa, Italy
[3] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[4] Georgia Inst Technol, Dept Elect & Comp Engn, Atlanta, GA 30332 USA
来源
IEEE JOURNAL OF RADIO FREQUENCY IDENTIFICATION | 2018年 / 2卷 / 02期
基金
美国国家科学基金会;
关键词
Tunneling; Gain; Radio frequency; Semiconductor diodes; Radiofrequency identification; Modulation; Power demand; RFID; long-range backscattering; backscattering; backscatter modulation; IoT; Internet of Things; CMOS integrated circuits; tunnel diode; quantum MOS; negative differential resistance; tunneling reflector; radio propagation;
D O I
10.1109/JRFID.2018.2852498
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Backscatter modulation in radio frequency identification (RFID) tags will potentially connect billions of tomorrow's devices to the Internet-of-Things. Current passive RFID systems have power constraints that limit RFID tag communication to short ranges, but these limitations can be overcome by employing reflection amplifiers. In this paper, we show that negative differential resistance devices, such as tunnel diodes, exhibit 27 dB more gain and 10 dB lower power consumption than state-of-the-art reflection amplifiers. Two 5.8 GHz prototypes using off-the-shelf tunnel diodes show reflection gains of 40 dB and 29 dB for a total biasing power consumption of 45 mu W and 39 mu W , respectively, at impinging RF power levels as low as -84 dBm. A 5.8 GHz RFID link of 23 m was achieved when transmitting only -14 dBm of effective isotropic radiated power from a transceiver with a sensitivity of -90 dBm.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 42 条
[1]  
Alhasheem M., 2018, 2018 IEEE ACS 15 INT, P1
[2]   RFID Backscattering in Long-Range Scenarios [J].
Amato, Francesco ;
Torun, Hakki M. ;
Durgin, Gregory D. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2018, 17 (04) :2718-2725
[3]  
Amato F, 2016, 2016 IEEE 3RD WORLD FORUM ON INTERNET OF THINGS (WF-IOT), P383, DOI 10.1109/WF-IoT.2016.7845420
[4]  
Amato F, 2015, 2015 IEEE INTERNATIONAL CONFERENCE ON RFID TECHNOLOGY AND APPLICATIONS (RFID-TA), P182, DOI 10.1109/RFID-TA.2015.7379815
[5]  
Amato F, 2015, IEEE INT CONF RFID, P137, DOI 10.1109/RFID.2015.7113084
[6]  
Amato V, 2017, QUALITY OF DEMOCRACY IN THE NEW POLITICAL ERA, P200
[7]   A 4-GHz Active Scatterer in 130-nm CMOS for Phase Sweep Amplify-and-Forward [J].
Bousquet, Jean-Francois ;
Magierowski, Sebastian ;
Messier, Geoffrey G. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (03) :529-540
[8]  
Cantu H. I., 2006, The Institution of Engineering and Technology Seminar on MM-Wave Products and Technologies, P66, DOI 10.1049/ic:20060112
[9]   Microwave reflection amplifier for detection and tagging applications [J].
Cantu, H. J. ;
Fusco, V. F. ;
Simms, S. .
IET MICROWAVES ANTENNAS & PROPAGATION, 2008, 2 (02) :115-119
[10]  
Chan P, 2011, EUR MICROW CONF, P976