INVERSE FUNCTION THEOREMS AND SHAPE OPTIMIZATION

被引:6
|
作者
DOYEN, L
机构
[1] Universite Paris-Dauphine, Paris
关键词
SHAPE OPTIMIZATION; SHAPE GRADIENT; TANGENT CONES; VELOCITY CONES; INVERSE FUNCTION THEOREM; FERMAT RULE; LAGRANGIAN MULTIPLIERS; KUHN-TUCKER MULTIPLIERS;
D O I
10.1137/S036301299222634X
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper the problem of shape optimization under shape constraints is investigated. Using the shape gradient and shape tangent cones, inverse function theorems are established. With these theorems, the existence of Lagrangian or Kuhn-Tucker multipliers for shape optimization problems with equality or inequality constraints is proved.
引用
收藏
页码:1621 / 1642
页数:22
相关论文
共 50 条
  • [21] PDE Constrained Shape Optimization as Optimization on Shape Manifolds
    Schulz, Volker H.
    Siebenborn, Martin
    Welker, Kathrin
    GEOMETRIC SCIENCE OF INFORMATION, GSI 2015, 2015, 9389 : 499 - 508
  • [22] Shape Optimization in Time-Dependent Navier-Stokes Flows via Function Space Parametrization Technique
    Gao, Zhiming
    Ma, Yichen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 66 (02): : 135 - 163
  • [23] Inverse Design of Local Solar Flux Distribution for a Solar Methanol Reforming Reactor Based on Shape Optimization
    Tang, Xinyuan
    Yang, Weiwei
    Dai, Zhouqiao
    Yang, Yongjian
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [24] Shape gradient of the dissipated energy functional in shape optimization for the viscous incompressible flow
    Gao, Zhiming
    Ma, Yichen
    APPLIED NUMERICAL MATHEMATICS, 2008, 58 (11) : 1720 - 1741
  • [25] ON FINITE ELEMENT APPROXIMATIONS TO A SHAPE GRADIENT FLOW IN SHAPE OPTIMIZATION OF ELLIPTIC PROBLEMS
    Liu, Chunxiao
    Zhu, Shengfeng
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (05): : 957 - 980
  • [26] ON DISCRETE SHAPE GRADIENTS OF BOUNDARY TYPE FOR PDE-CONSTRAINED SHAPE OPTIMIZATION
    Gong, Wei
    Zhu, Shengfeng
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (03) : 1510 - 1541
  • [27] Parametric shape optimization using the support function (vol 2022, pg, 2022)
    Antunes, Pedro R. S.
    Bogosel, Beniamin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (01) : 139 - 139
  • [28] Parameter-Free Shape Optimization: Various Shape Updates for Engineering Applications
    Radtke, Lars
    Bletsos, Georgios
    Kuehl, Niklas
    Suchan, Tim
    Rung, Thomas
    Duester, Alexander
    Welker, Kathrin
    AEROSPACE, 2023, 10 (09)
  • [29] IMPROVED DISCRETE BOUNDARY TYPE SHAPE GRADIENTS FOR PDE-CONSTRAINED SHAPE OPTIMIZATION
    Gong, Wei
    Li, Jiajie
    Zhu, Shengfeng
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04) : A2464 - A2505
  • [30] A robust alternating direction method of multipliers numerical scheme for solving geometric inverse problems in a shape optimization setting
    Rabago, J. F. T.
    Hadri, A.
    Afraites, L.
    Hendy, A. S.
    Zaky, M. A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 175 : 19 - 32