CLASSICAL MECHANICS IN INFINITE-DIMENSIONAL HILBERT-SPACE

被引:0
作者
ZORSKI, H
SZCZEPANSKI, J
机构
来源
ARCHIVES OF MECHANICS | 1989年 / 41卷 / 01期
关键词
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:115 / 132
页数:18
相关论文
共 50 条
  • [41] SPACES OF CLASSICAL FUNCTIONS ON A SEPARABLE HILBERT-SPACE
    SLOWIKOWSKI, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (11): : 381 - 384
  • [42] Infinite-dimensional Categorical Quantum Mechanics
    Gogioso, Stefano
    Genovese, Fabrizio
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2017, (236): : 51 - 69
  • [43] INFINITE-DIMENSIONAL CLASSICAL-GROUPS
    GARDENER, TS
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1995, 51 : 219 - 229
  • [44] Effective dimensions of infinite-dimensional Hilbert spaces: A phase-space approach
    Pilatowsky-Cameo, Saul
    Villasenor, David
    Bastarrachea-Magnani, Miguel A.
    Lerma-Hernandez, Sergio
    Hirsch, Jorge G.
    PHYSICAL REVIEW E, 2022, 105 (06)
  • [45] The Caratheodory-Cartan-Kaup-Wu Theorem on an infinite-dimensional Hilbert space
    Cima, Joseph A.
    Graham, Ian
    Kim, Kang Tae
    Krantz, Steven G.
    NAGOYA MATHEMATICAL JOURNAL, 2007, 185 : 17 - 30
  • [47] A PROPERTY OF INFINITE-DIMENSIONAL HILBERT-SPACES
    FRASCA, M
    VILLANI, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) : 352 - 361
  • [48] INFINITE-DIMENSIONAL INTEGRATION ON WEIGHTED HILBERT SPACES
    Gnewuch, Michael
    MATHEMATICS OF COMPUTATION, 2012, 81 (280) : 2175 - 2205
  • [49] SENSITIVE OBSERVABLES ON INFINITE-DIMENSIONAL HILBERT SPACES
    FORTUNATO, D
    SELLERI, F
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1976, 15 (05) : 333 - 338
  • [50] Continuous discretization of infinite-dimensional Hilbert spaces
    Vernaz-Gris, P.
    Ketterer, A.
    Keller, A.
    Walborn, S. P.
    Coudreau, T.
    Milman, P.
    PHYSICAL REVIEW A, 2014, 89 (05)