MINIMAX PROBLEMS AND CONVEX ANALYSIS

被引:0
|
作者
LUDERER, B [1 ]
机构
[1] MOSCOW STATE UNIV,GEN CONTROL PROBL DEPT,MOSCOW,USSR
来源
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA | 1975年 / 06期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:25 / 31
页数:7
相关论文
共 50 条
  • [21] Optimality conditions and sensitivity analysis in parametric convex minimax programming
    An, Duong Thi Viet
    Ngoan, Dang Thi
    Tuyen, Nguyen Van
    APPLICABLE ANALYSIS, 2024, 103 (16) : 2997 - 3016
  • [22] MINIMAX TESTS FOR CONVEX CONES
    DUMBGEN, L
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1995, 47 (01) : 155 - 165
  • [23] Stochastic Methods Based on VU-Decomposition Methods for Stochastic Convex Minimax Problems
    Lu, Yuan
    Wang, Wei
    Chen, Shuang
    Huang, Ming
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [25] Nash equilibrium and minimax theorems via variational tools of convex analysis
    Bao, Nguyen Xuan Duy
    Mordukhovich, Boris S.
    Nam, Nguyen Mau
    OPTIMIZATION, 2024,
  • [26] ON MINIMAX PRINCIPLES AND SETS WITH CONVEX SECTIONS
    TARAFDAR, E
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1982, 29 (3-4): : 219 - 226
  • [27] MINIMAX SOLUTIONS OF RANDOM CONVEX PROGRAMS
    THEODORESCU, R
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1969, 46 (06): : 689 - +
  • [28] Dilated POCS: Minimax Convex Optimization
    Yu, Albert R.
    Marks II, Robert J.
    Schubert, Keith E.
    Baylis, Charles
    Egbert, Austin
    Goad, Adam
    Haug, Samuel
    IEEE ACCESS, 2023, 11 : 32733 - 32742
  • [29] An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Sedlmayer, Michael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 86 (03) : 925 - 966
  • [30] An accelerated minimax algorithm for convex-concave saddle point problems with nonsmooth coupling function
    Radu Ioan Boţ
    Ernö Robert Csetnek
    Michael Sedlmayer
    Computational Optimization and Applications, 2023, 86 : 925 - 966