Mining Branching Rules from Past Survey Data with an Illustration Using a Geriatric Assessment Survey for Older Adults with Cancer

被引:1
作者
Jeske, Daniel R. [1 ]
Longmate, Jeffrey [2 ]
Katheria, Vani [3 ,4 ]
Hurria, Arti [3 ,4 ]
机构
[1] Univ Calif Riverside, Dept Stat, Riverside, CA 92521 USA
[2] City Hope Natl Med Ctr, Div Biostat, Duarte, CA 91010 USA
[3] City Hope Natl Med Ctr, Ctr Comprehens Canc, Duarte, CA 91010 USA
[4] City Hope Natl Med Ctr, Beckman Res Inst, Duarte, CA 91010 USA
来源
ALGORITHMS | 2016年 / 9卷 / 02期
关键词
branching rules; historical surveys; data mining;
D O I
10.3390/a9020033
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We construct a fast data mining algorithm that can be used to identify high-frequency response patterns in historical surveys. Identification of these patterns leads to the derivation of question branching rules that shorten the time required to complete a survey. The data mining algorithm allows the user to control the error rate that is incurred through the use of implied answers that go along with each branching rule. The context considered is binary response questions, which can be obtained from multi-level response questions through dichotomization. The algorithm is illustrated by the analysis of four sections of a geriatric assessment survey used by oncologists. Reductions in the number of questions that need to be asked in these four sections range from 33% to 54%.
引用
收藏
页数:14
相关论文
共 15 条
  • [1] Shortening a survey and using alternative forms of prenotification: Impact on response rate and quality
    Beebe, Timothy J.
    Rey, Enrique
    Ziegenfuss, Jeanette Y.
    Jenkins, Sarah
    Lackore, Kandace
    Talley, Nicholas J.
    Locke, Richard G., III
    [J]. BMC MEDICAL RESEARCH METHODOLOGY, 2010, 10
  • [2] BURCHELL B, 1992, QUAL QUANT, V26, P233
  • [3] Predicting the risk of chemotherapy toxicity in older patients: The Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) score
    Extermann, Martine
    Boler, Ivette
    Reich, Richard R.
    Lyman, Gary H.
    Brown, Richard H.
    DeFelice, Joseph
    Levine, Richard M.
    Lubiner, Eric T.
    Reyes, Pablo
    Schreiber, Frederic J., III
    Balducci, Lodovico
    [J]. CANCER, 2012, 118 (13) : 3377 - 3386
  • [4] Fanning E, 2005, PRACT ASSESS RES EVA, V10, P1, DOI DOI 10.7275/S84T-8A63
  • [5] Hayes A.F., 2005, P M MIDW ASS PUBL OP
  • [6] Predicting Chemotherapy Toxicity in Older Adults With Cancer: A Prospective Multicenter Study
    Hurria, Arti
    Togawa, Kayo
    Mohile, Supriya G.
    Owusu, Cynthia
    Klepin, Heidi D.
    Gross, Cary P.
    Lichtman, Stuart M.
    Gajra, Ajeet
    Bhatia, Smita
    Katheria, Vani
    Klapper, Shira
    Hansen, Kurt
    Ramani, Rupal
    Lachs, Mark
    Wong, F. Lennie
    Tew, William P.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (25) : 3457 - 3465
  • [7] Lincare J.M., 2000, DEV COMPUTERIZED MID
  • [8] Lindoff Gordon, 2011, DATA MINING TECHNIQU
  • [9] Lunz M.E, 1994, INT J EDUC RES, V21, P623, DOI [10.1016/0883-0355(94)90015-9, DOI 10.1016/0883]
  • [10] Item Response Theory Analysis of the Modified Roland-Morris Disability Questionnaire in a Population-Based Study
    Mielenz, Thelma J.
    Carey, Timothy S.
    Edwards, Michael C.
    [J]. SPINE, 2015, 40 (06) : E366 - E371