A Hybrid Computing Adaptive Filtering Methods for Parameter Estimation of Nonstationary Power Signals

被引:0
|
作者
Biswal, B. N. [1 ]
Patra, P. K. [2 ]
Panigrahi, B. K. [3 ]
Dash, P. K. [4 ]
机构
[1] GIIT, Dept ECE, Berhampur, Orissa, India
[2] CET, Dept CSE, Bhubaneswar, Orissa, India
[3] IIT, Dept EE, Dehi, India
[4] SOA Univ, Res, Bhubaneswar, Orissa, India
来源
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY | 2010年 / 10卷 / 04期
关键词
S-Transform (ST); Kalman Filter; Time-frequency localization; Frequency estimation; Noise rejection and time varying amplitude and phase estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a new approach in the detection, localization, and classification of frequency and amplitude changes in nonstationary signal waveforms using a variable window short-time Fourier Transform (STFT) known as ST in short and an Extended Complex Kalman Filter (CEKF). Unlike the fixed window STFT, the variable window Short-time Fourier Transform has excellent time-frequency resolution characteristics and provides detection, localization, and visual patterns suitable for automatic recognition of time-varying signal patterns. The CEKF, on the other hand, provides automatic classification and measurements of the frequent amplitude, and phase of sinusoids embedded in noise. The technique is applied to both simulated and experimentally obtained waveform disturbances in the presence of additive noise and the results reveal significant accuracy in completely localizing the changes in amplitude, frequency, and phase of nonstationary sinusoids in noise.
引用
收藏
页码:145 / 153
页数:9
相关论文
共 29 条
  • [1] Adaptive modeling and spectral estimation of nonstationary biomedical signals based on Kalman filtering
    Aboy, M
    Márquez, OW
    McNames, J
    Hornero, R
    Trong, T
    Goldstein, B
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2005, 52 (08) : 1485 - 1489
  • [2] A signal processing adaptive algorithm for nonstationary power signal parameter estimation
    Hasan, Shazia
    Dash, P. K.
    Nanda, S.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2013, 27 (03) : 166 - 181
  • [3] Power spectral density estimation and tracking of nonstationary pressure signals based on Kalman filtering
    Aboy, M
    McNames, J
    Márquez, OW
    Hornero, R
    Thong, T
    Goldstein, B
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 156 - 159
  • [4] A hybrid unscented filtering and particle swarm optimization technique for harmonic analysis of nonstationary signals
    Dash, P. K.
    Hasan, Shazia
    Panigrahi, B. K.
    MEASUREMENT, 2010, 43 (10) : 1447 - 1457
  • [5] A spectral estimation method for nonstationary signals analysis with application to power systems
    Adamo, F.
    Attivissimo, F.
    Di Nisio, A.
    Savino, M.
    Spadavecchia, M.
    MEASUREMENT, 2015, 73 : 247 - 261
  • [6] Maximum Likelihood Parameter Estimation of Unbalanced Three-Phase Power Signals
    Xia, Yili
    Kanna, Sithan
    Mandic, Danilo P.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2018, 67 (03) : 569 - 581
  • [7] A new Taylor-LMS adaptive filter for parameter estimation of power signals including distributed generation systems
    Nanda S.
    Chakravorty T.
    Dash P.K.
    Dash, P.K. (pkdash.india@gmail.com), 1600, Taylor and Francis Ltd. (13): : 174 - 194
  • [8] Alternative Nonlinear Filtering Techniques in Geodesy for Dual State and Adaptive Parameter Estimation
    Alkhatib, H.
    1ST INTERNATIONAL WORKSHOP ON THE QUALITY OF GEODETIC OBSERVATION AND MONITORING SYSTEMS (QUGOMS'11), 2015, 140 : 107 - 113
  • [9] Frequency Adaptive Parameter Estimation of Unbalanced and Distorted Power Grid
    Ahmed, Hafiz
    Benbouzid, Mohamed
    Ahsan, Mominul
    Albarbar, Alhussein
    Shahjalal, Mohammad
    IEEE ACCESS, 2020, 8 : 8512 - 8519
  • [10] Adaptive Kalman Filtering for Local Mean Power Estimation in Mobile Communications
    Kurt, T.
    Lerbour, R.
    Le Helloco, Y.
    Breton, B.
    2006 IEEE 64TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-6, 2006, : 1415 - 1418