The Hausdorff measure of the support of two-dimensional super-Brownian motion

被引:0
作者
LeGall, JF [1 ]
Perkins, EA [1 ]
机构
[1] UNIV BRITISH COLUMBIA, DEPT MATH, VANCOUVER, BC V6T 1Z2, CANADA
关键词
super-Brownian motion; Hausdorff measure;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We show that two-dimensional super-Brownian motion is a multiple of the h-Hausdorff measure on its closed support, where h(r) = r(2) log(+)(1/r)log(+) log(+) log(+) (1/r). This complements known results in dimensions greater than 2.
引用
收藏
页码:1719 / 1747
页数:29
相关论文
共 13 条
[1]  
DAWSON D. A., 1993, LECT NOTES MATH, V1541, P1
[2]  
DAWSON DA, 1992, STOCHASTIC ANAL RELA
[3]   BRANCHING PARTICLE-SYSTEMS AND SUPERPROCESSES [J].
DYNKIN, EB .
ANNALS OF PROBABILITY, 1991, 19 (03) :1157-1194
[4]   ABSOLUTE CONTINUITY RESULTS FOR SUPERPROCESSES WITH SOME APPLICATIONS [J].
EVANS, SN ;
PERKINS, E .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 325 (02) :661-681
[5]  
Federer H., 1969, GRUNDLEHREN MATH WIS
[6]   THE BROWNIAN SNAKE AND SOLUTIONS OF DELTA-U=U(2) IN A DOMAIN [J].
LEGALL, JF .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 102 (03) :393-432
[7]   A CLASS OF PATH-VALUED MARKOV-PROCESSES AND ITS APPLICATIONS TO SUPERPROCESSES [J].
LEGALL, JF .
PROBABILITY THEORY AND RELATED FIELDS, 1993, 95 (01) :25-46
[8]  
LEGALL JF, 1994, FESTSCHRIFT HONOR EB, P237
[9]  
LEGALL JF, 1994, P 1 EUR C MATH BIRKH, V2, P185
[10]  
PERKINS E, 1989, ANN I H POINCARE-PR, V25, P205