ASYMPTOTIC ANALYSIS OF THE FOKKER-PLANCK EQUATION RELATED TO BROWNIAN-MOTION

被引:9
作者
BANASIAK, J
MIKA, JR
机构
关键词
D O I
10.1142/S0218202594000030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we apply the modified Chapman-Enskog expansion procedure to find the asymptotic solution of the Fokker-Planck equation related to Brownian motion. We prove that the asymptotic solution is defined by the diffusion equation and show that the difference between the exact and asymptotic solutions is of order epsilon2 where 1/epsilon is related to the magnitude of the collision operator.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 9 条
[1]   DIFFUSION-APPROXIMATION AND COMPUTATION OF THE CRITICAL SIZE [J].
BARDOS, C ;
SANTOS, R ;
SENTIS, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (02) :617-649
[2]  
DAUTREY R, 1990, MATH ANAL NUMERICAL, V3
[3]  
Degond P., 1987, Transport Theory and Statistical Physics, V16, P589, DOI 10.1080/00411458708204307
[4]  
ELLIS RS, 1975, J MATH PURE APPL, V54, P125
[5]  
Kato T., 1966, PERTURBATION THEORY
[6]   ASYMPTOTIC SOLUTION OF NEUTRON-TRANSPORT PROBLEMS FOR SMALL MEAN FREE PATHS [J].
LARSEN, EW ;
KELLER, JB .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (01) :75-81
[7]  
Mika J. R., 1981, MATH METHOD APPL SCI, V3, P172
[8]   ASYMPTOTIC ANALYSIS OF SINGULARLY PERTURBED SYSTEMS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
MIKA, JR ;
PALCZEWSKI, A .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (10) :13-32
[9]  
Pazy A., 1983, SEMIGROUPS LINEAR OP