A RULE FOR QUANTIZING CHAOS

被引:193
作者
BERRY, MV
KEATING, JP
机构
[1] H H Wills Phys. Lab., Bristol
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 21期
关键词
D O I
10.1088/0305-4470/23/21/024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The authors find a real function Delta (E) whose zeros approximate the quantum energy levels of a system with chaotic classical trajectories. Delta (E) is a finite sum over combinations of classical periodic orbits. It is obtained from Gutzwiller's infinite and divergent sum (1982), representing the spectral density in terms of periodic orbits, by means of a resummation conjectured by analogy with a derivation of the Riemann-Siegel formula for the Riemann zeros. They assess the practicality of the quantization condition.
引用
收藏
页码:4839 / 4849
页数:11
相关论文
共 25 条
[1]   QUANTUM CHAOS OF THE HADAMARD-GUTZWILLER MODEL [J].
AURICH, R ;
SIEBER, M ;
STEINER, F .
PHYSICAL REVIEW LETTERS, 1988, 61 (05) :483-487
[2]   CHAOS ON THE PSEUDOSPHERE [J].
BALAZS, NL ;
VOROS, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 143 (03) :109-240
[3]   Semiclassical formula for the number variance of the Riemann zeros [J].
Berry, M. V. .
NONLINEARITY, 1988, 1 (03) :399-407
[4]  
Berry M. V., 1986, SPRINGER LECT NOTES, P1
[7]  
BERRY MV, 1983, 36 LES HOUCH LECT SE, P171
[8]  
BERRY MV, 1990, LES HOUCHES LECTURE, V52
[9]  
BOGOMOLNY EB, 1990, IN PRESS AT MOL PHYS
[10]  
BOHIGAS O, 1984, LECT NOTES PHYS, V209, P1