Strengthening mechanisms of indirect-extruded Mg-Sn based alloys at room temperature

被引:110
作者
Cheng, Wei Li [1 ,2 ]
Tian, Quan Wei [2 ]
Yu, Hui [3 ]
Zhang, Hua [1 ,2 ]
You, Bong Sun [3 ]
机构
[1] Taiyuan Univ Technol, Minist Educ, Key Lab Interface Sci & Engn Adv Mat, Taiyuan 030024, Peoples R China
[2] Taiyuan Univ Technol, Sch Mat Sci & Engn, Taiyuan 030024, Peoples R China
[3] Korea Inst Mat Sci, Chang Won 642831, South Korea
基金
山西省青年科学基金; 中国国家自然科学基金;
关键词
Mg alloys; Microstructure; Mechanical properties; Strengthening mechanism;
D O I
10.1016/j.jma.2014.11.003
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The strength of a material is dependent on how dislocations in its crystal lattice can be easily propagated. These dislocations create stress fields within the material depending on their intrinsic character. Generally, the following strengthening mechanisms are relevant in wrought magnesium materials tested at room temperature: fine-grain strengthening, precipitate strengthening and solid solution strengthening as well as texture strengthening. The indirect-extruded Mg-8Sn (T8) and Mg-8Sn-1Al-1Zn (TAZ811) alloys present superior tensile properties compared to the commercial AZ31 alloy extruded in the same condition. The contributions to the strengthen of Mg-Sn based alloys made by four strengthening mechanisms were calculated quantitatively based on the microstructure characteristics, physical characteristics, thermo-mechanical analysis and interactions of alloying elements using AZ31 alloy as benchmark. Copyright 2014, National Engineering Research Center for Magnesium Alloys of China, Chongqing University. Production and hosting by Elsevier B.V. Open access under Open access under CC BY-NC-ND license.
引用
收藏
页码:299 / 304
页数:6
相关论文
共 26 条
[1]   THE ROLE OF EQUIAXED PARTICLES ON THE YIELD STRESS OF COMPOSITES [J].
AIKIN, RM ;
CHRISTODOULOU, L .
SCRIPTA METALLURGICA ET MATERIALIA, 1991, 25 (01) :9-14
[2]  
Caceres CH, 2002, PHYS STATUS SOLIDI A, V194, P147, DOI 10.1002/1521-396X(200211)194:1<147::AID-PSSA147>3.0.CO
[3]  
2-L
[4]   Influence of alloying elements on microstructure and microhardness of Mg-Sn-Zn-based alloys [J].
Cheng, W. L. ;
Park, S. S. ;
Tang, W. N. ;
You, B. S. ;
Koo, B. H. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (12) :2246-2252
[5]  
Frost H.J., 1982, DEFORMATION MECH MAP, P44
[6]   Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys [J].
Gao, L. ;
Chen, R. S. ;
Han, E. H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 481 (1-2) :379-384
[7]   MULTICOMPONENT SOLID-SOLUTION HARDENING .1. PROPOSED MODEL [J].
GYPEN, LA ;
DERUYTTERE, A .
JOURNAL OF MATERIALS SCIENCE, 1977, 12 (05) :1028-1033
[8]   Microstructure and strengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy [J].
He, S. M. ;
Zeng, X. Q. ;
Peng, L. M. ;
Gao, X. ;
Nie, J. F. ;
Ding, W. J. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 427 (1-2) :316-323
[9]   The influence of calcium and cerium mischmetal on the microstructural evolution of Mg-3Al-1Zn during extrusion and resulting mechanical properties [J].
Laser, T. ;
Hartig, Ch. ;
Nuernberg, M. R. ;
Letzig, D. ;
Bormann, R. .
ACTA MATERIALIA, 2008, 56 (12) :2791-2798
[10]  
LUSTER JW, 1993, MATER SCI TECH SER, V9, P853, DOI 10.1179/026708393790171421