REDUCED-DIRECTION METHODS FOR THE NONLINEAR-PROGRAMMING PROBLEM

被引:1
作者
IZHUTKIN, VS [1 ]
KOKURIN, MY [1 ]
机构
[1] Mari State Univ, Yoshkar Ola 424001, RUSSIA
来源
USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS | 1988年 / 28卷 / 06期
关键词
D O I
10.1016/0041-5553(88)90056-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:135 / 145
页数:11
相关论文
共 23 条
[1]  
[Anonymous], 1971, COMPUTATIONAL METHOD
[3]  
BULANYI AP, 1978, ZH VYCH MAT MAT FIZ, V18, P877
[4]  
DANILIN YM, 1977, KIBERNETIKA, V6, P97
[5]  
Gill PE, 1981, PRACTICAL OPTIMIZATI
[6]  
GOLIKOV AI, 1983, ZH VYCH MAT MAT FIZ, V23, P314
[7]   A NONLINEAR-PROGRAMMING TECHNIQUE FOR THE OPTIMIZATION OF CONTINUOUS PROCESSING SYSTEMS [J].
GRIFFITH, RE ;
STEWART, RA .
MANAGEMENT SCIENCE, 1961, 7 (04) :379-392
[8]   SUPERLINEARLY CONVERGENT VARIABLE METRIC ALGORITHMS FOR GENERAL NONLINEAR-PROGRAMMING PROBLEMS [J].
HAN, SP .
MATHEMATICAL PROGRAMMING, 1976, 11 (03) :263-282
[9]   ON THE GLOBALIZATION OF WILSON-TYPE OPTIMIZATION METHODS BY MEANS OF GENERALIZED REDUCED GRADIENT METHODS [J].
ISHUTKIN, VS ;
SCHONEFELD, K .
COMPUTING, 1986, 37 (02) :151-169
[10]  
IZHUTKIN VS, 1986, IZV VUZ MATEM, V8, P27