CHAOS, ENTROPY AND A GENERALIZED EXTENSION PRINCIPLE

被引:31
作者
DIAMOND, P
POKROVSKII, A
机构
[1] Mathematics Department, University of Queensland, Brisbane
基金
澳大利亚研究理事会;
关键词
CHAOS; FUZZIFICATION; ENTROPY; DYNAMICAL SYSTEM;
D O I
10.1016/0165-0114(94)90170-8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We show a relationship between a very simple criterion, positive topological entropy and Li-Yorke chaos. A general definition of fuzzification and level set, based on t-norms/conorms and their diagonal functions, is introduced. The chaos theorem of Benhabib and Day for set valued mappings is considerably strengthened and generalised.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 19 条
[1]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[2]   RATIONAL CHOICE AND ERRATIC BEHAVIOR [J].
BENHABIB, J ;
DAY, RH .
REVIEW OF ECONOMIC STUDIES, 1981, 48 (03) :459-471
[3]  
BLANK ML, 1989, RUSS MATH SURV, V44, P1
[4]  
Bowen R, 1970, P S PURE MATH, VXIV
[5]  
DEBREU G, 1967, 5 P BERK S MATH STAT, V2, P351
[6]  
Devaney R L, 1989, INTRO CHAOTIC DYNAMI
[7]   CHAOTIC BEHAVIOR OF SYSTEMS OF DIFFERENCE EQUATIONS [J].
DIAMOND, P .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1976, 7 (08) :953-956
[8]  
DIAMOND P, 1992, 2ND P INT C FUZZ LOG, P51
[9]  
DIAMOND P, IN PRESS FUZZY SETS
[10]   ERGODIC-THEORY OF CHAOS AND STRANGE ATTRACTORS [J].
ECKMANN, JP ;
RUELLE, D .
REVIEWS OF MODERN PHYSICS, 1985, 57 (03) :617-656