CASORATI DETERMINANT SOLUTION FOR THE RELATIVISTIC TODA LATTICE EQUATION

被引:43
作者
OHTA, Y
KAJIWARA, K
MATSUKIDAIRA, J
SATSUMA, J
机构
[1] UNIV TOKYO, FAC ENGN, DEPT APPL PHYS, TOKYO 113, JAPAN
[2] RYUKOKU UNIV, DEPT APPL MATH & INFORMAT, OTSU 52021, JAPAN
[3] UNIV TOKYO, DEPT MATH SCI, MEGURO KU, TOKYO 153, JAPAN
关键词
D O I
10.1063/1.530298
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The relativistic Toda lattice equation is decomposed into three Toda systems, the Toda lattice itself, BAcklund transformation of Toda lattice, and discrete time Toda lattice. It is shown that the solutions of the equation are given in terms of the Casorati determinant. By using the Casoratian technique, the bilinear equations of Toda systems are reduced to the Laplace expansion form for determinants. The N-soliton solution is explicitly constructed in the form of the Casorati determinant.
引用
收藏
页码:5190 / 5204
页数:15
相关论文
共 27 条
[1]   RECURSION OPERATOR AND BACKLUND-TRANSFORMATIONS FOR THE RUIJS']JSENAARS-TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1988, 129 (01) :21-25
[2]   LAX REPRESENTATION AND COMPLETE-INTEGRABILITY FOR THE PERIODIC RELATIVISTIC TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1989, 134 (06) :365-370
[3]   INFINITE RELATIVISTIC TODA LATTICE - SCATTERING PROBLEM AND CANONICAL STRUCTURE [J].
COSENTINO, S .
INVERSE PROBLEMS, 1991, 7 (04) :535-555
[4]  
Date E., 1983, Non-Linear Integrable Systems - Classical Theory and Quantum Theory. Proceedings of RIMS Symposium, P39
[5]   SOLITON-SOLUTIONS OF NON-LINEAR EVOLUTION-EQUATIONS [J].
FREEMAN, NC .
IMA JOURNAL OF APPLIED MATHEMATICS, 1984, 32 (1-3) :125-145
[6]   SOLITON-SOLUTIONS OF THE KORTEWEG-DEVRIES AND KADOMTSEV-PETVIASHVILI EQUATIONS - THE WRONSKIAN TECHNIQUE [J].
FREEMAN, NC ;
NIMMO, JJC .
PHYSICS LETTERS A, 1983, 95 (01) :1-3
[7]   THE TRILINEAR EQUATION AS A (2+2)-DIMENSIONAL EXTENSION OF THE (1+1)-DIMENSIONAL RELATIVISTIC TODA LATTICE [J].
HIETARINTA, J ;
SATSUMA, J .
PHYSICS LETTERS A, 1991, 161 (03) :267-273
[8]  
HIETARINTA J, 1992, NONLINEAR EVOLUTION
[9]   DISCRETE ANALOG OF A GENERALIZED TODA EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3785-3791
[10]  
HIROTA R, 1988, PROG THEOR PHYS SUPP, P42, DOI 10.1143/PTPS.94.42