A HOMOTOPY THEOREM ON ORIENTED MATROIDS

被引:9
|
作者
CORDOVIL, R [1 ]
MOREIRA, ML [1 ]
机构
[1] UNIV PORTO, CTR MATEMAT, P-4000 OPORTO, PORTUGAL
关键词
D O I
10.1016/0012-365X(93)90149-N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a finite family of hyperplanes H = {H-1,...,H(n)} in the finite-dimensional vector space R(d). We call chambers (determined by H) the connected components of R(d)\union i=1(n) H(i). Galleries are finite families of chambers (C0, C1,...,C(m)), where exactly one hyperplane separates C(i+1) from C(i), for O less-than-or-equal-to m, and exactly m hyperplanes separate C0 from C(m). Using oriented matroid theory, we prove that any two galleries with the same extremities can be derived from each other by a finite number of deformations of the same kind (elementary deformations). When the chambers are simplicial cones, this is a result of Deligne (1972). Our theorem generalizes also a result of Salvetti (1987).
引用
收藏
页码:131 / 136
页数:6
相关论文
共 50 条