Initial coefficient bounds for a subclass of m-old symmetric bi-univalent functions

被引:74
作者
Srivastava, H. M. [1 ]
Sivasubramanianz, S. [2 ]
Sivakurnar, R. [2 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC VSW 3R4, Canada
[2] Anna Univ, Univ Coll Engn, Dept Math, Madras 604001, Tamil Nadu, India
关键词
Analytic function; Univalent functions; Bi-Univalent functions; m-Fold symmetric functions; m-Fold symmetric bi-univalent functions;
D O I
10.2478/tmj-2014-0011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Sigma denote the class of functions f(z) = z + Sigma(infinity)(n=2) a(n)z(n) belonging to the normalized analytic function class A in the open unit disk U, which are bi-univalent in U, that is, both the function f and its inverse f(-1) are univalent in U. The usual method for computation of the coefficients of the inverse function f(-1)(z) by means of the relation f(-1)(f(z))= z is too difficult to apply in the case of m-fold symmetric analytic functions in U. Here, in our present investigation, we aim at overcoming this difficulty by using a general formula to compute the coefficients of f(-1)(z) in conjunction with the residue calculus. As an application, we introduce two new subclasses of the bi-univalent function class ? in which both f(z) and f(-1)(z) are m-fold symmetric analytic functions with their derivatives in the class P of analytic functions with positive real part in U. For functions in each of the subclasses introduced in this paper, we obtain the coefficient bounds for |a(m+1)| and |a(2m+1)|
引用
收藏
页码:1 / 10
页数:10
相关论文
共 18 条
[1]  
[Anonymous], 1962, MICHIGAN MATH J
[2]  
BRANNAN DA, 1980, P NATO ADV STUD I HE
[3]  
Duren P. L, 1983, UNIVALENT FUNCTIONSG, V259
[4]   New subclasses of bi-univalent functions [J].
Frasin, B. A. ;
Aouf, M. K. .
APPLIED MATHEMATICS LETTERS, 2011, 24 (09) :1569-1573
[5]  
Goodman AW., 1983, UNIVALENT FUNCTIONS
[6]  
Goyal S.P., 2012, J EGYPTIAN MATH SOC, V20, P179, DOI [10.1016/j.joems.2012.08.020, DOI 10.1016/J.JOEMS.2012.08.020, DOI 10.1016/J.J0EMS.2012.08.020]
[7]  
Hayami T., 2012, PAN AM MATH J, V22
[8]  
KOEPF W, 1989, P AM MATH SOC, V105, P324
[9]  
Krzyz J. G., 1979, ANN U MARIA CURIE, V33, P103