DESCRIPTIONS OF THE CHARACTERISTIC SEQUENCE OF AN IRRATIONAL

被引:61
作者
BROWN, TC [1 ]
机构
[1] SIMON FRASER UNIV,DEPT MATH & STAT,BURNABY V5A 1S6,BC,CANADA
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 1993年 / 36卷 / 01期
关键词
D O I
10.4153/CMB-1993-003-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha be a positive irrational real number. (Without loss of generality assume 0 < alpha < 1.) The characteristic sequence of alpha is f(alpha) = f1f2..., where f(n) = [(n + 1)alpha] - [nalpha]. We make some observations on the various descriptions of the characteristic sequence of ce which have appeared in the literature. We then refine one of these descriptions in order to obtain a very simple derivation of an arithmetic expression for [nalpha] which appears in A. S. Fraenkel, J. Levitt, and M. Shimshoni [17]. Some concluding remarks give conditions on n which are equivalent to f(n) = 1.
引用
收藏
页码:15 / 21
页数:7
相关论文
共 40 条
[1]  
ANDERSON PW, COMMUNICATION
[2]  
Bernoulli J., 1772, RECUEIL ASTRONOMES, V1, P255
[3]  
BOREL JP, 1991, CR ACAD SCI I-MATH, V313, P483
[4]  
BOREL JP, IN PRESS SEMINAIRE T
[5]   A CHARACTERIZATION OF THE QUADRATIC IRRATIONALS [J].
BROWN, TC .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1991, 34 (01) :36-41
[6]  
BROWN TC, SUMS FRACTIONAL PART
[7]  
Christoffel, 1875, ANN MAT PUR APPL, V6, P145
[8]  
COHN H, 1974, ANN MATH STUD, V79, P81
[9]  
Connell IG., 1960, CAN MATH B, V3, P17, DOI DOI 10.4153/CMB-1960-004-2
[10]  
CRISP D, SUBSTITUTION INVARIA