HOMOGENEOUS BIVARIATE DECOMPOSITIONS

被引:9
作者
VONZURGATHEN, J
WEISS, J
机构
[1] UNIV TORONTO, DEPT COMP SCI, TORONTO, ON M5S 1A4, CANADA
[2] UNIV BONN, INST INFORMAT 1, D-53731 ST AUGUSTIN, GERMANY
[3] GMD, INST I1, D-53731 ST AUGUSTIN, GERMANY
关键词
D O I
10.1006/jsco.1995.1024
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A homogeneous bivariate decomposition of a univariate polynomial f is of the form f = g(h, k) with polynomials g, h, Ic, where g is bivariate and homogeneous. Such decompositions are of interest in robotics applications. This paper gives a Structure Theorem relating these decompositions to certain block decompositions of the roots of f, decomposition algorithms, and a classification of all constellations of degrees for which ''almost all'' polynomials f have such a decomposition.
引用
收藏
页码:409 / 434
页数:26
相关论文
共 26 条
[1]  
Dickerson M.T., The Functional Decomposition of Polynomials. Phd Thesis, Cornell University, (1989)
[2]  
Von Zur Gathen J., Irreducibility of multivariate polynomials, Journal of Computer and System Sciences, 31, pp. 225-264, (1985)
[3]  
Von Zur Gathen J., Functional decomposition of polynomials: The tame case, J. Symbolic Computation, 9, pp. 281-299, (1990)
[4]  
Vonzur Gathen J., Functional decomposition of polynomials: The wild case, J. Symbolic Computation, 10, pp. 437-452, (1990)
[5]  
Ghazvini M., Reducing the inverse kinematics of manipulators to the solution of a generalized eigenproblem, Computational Kinematics, Vol. 28. Solid Mechanics and Its Application, pp. 15-26, (1993)
[6]  
Gutierrez J., Recio T., A practical implementation of two rational function decomposition algorithms, Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC 92, pp. 152-157, (1992)
[7]  
Heintz J., Sieveking M., Lower bounds for polynomials with algebraic coefficients, Theoretical Computer Science, 11, pp. 321-330, (1980)
[8]  
Kovacs P., Hommel G., Factorization and decomposition in kinematic equation systems, Forschungsbericht 1990-23, (1990)
[9]  
Kovacs P., Hommel G., An expert system for the optimal symbolic solution of the inverse kinematics problem, Proc. Int. Conf. Autom., Robotics and Computer Vision, Singapore, (1992)
[10]  
Kozen D., Landau S., Polynomial decomposition algorithms, J. Symbolic Computation, 7, pp. 445-456, (1989)