A FINITE-ELEMENT FORMULATION FOR SHELLS OF ARBITRARY GEOMETRY

被引:14
作者
SAETTA, AV
VITALIANI, RV
机构
[1] Istituto di Scienza e Tecnica delle Costruzioni, Università di Padova, 35100 Padova
关键词
D O I
10.1016/0045-7949(90)90108-E
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The finite element formulation of a general curved shell element based on Mindlin-Reissner's theory is presented. Only C0-continuity is required for the interpolation functions. The element is obtained by defining two radii of curvature whose ratio to the element characteristic dimension may be up to one (so also allowing the study of structures having large curvature, i.e. deep shells) and by using a three-dimensional curvilinear coordinate system to which the shell's behaviour may be referred. Three classical shell-like structures' formulations are derived as particular cases to that presented in this paper, so demonstrating its validity and generality.
引用
收藏
页码:781 / 793
页数:13
相关论文
共 18 条
[1]  
Ahmad S., 1970, INT J NUMER METHODS, V2, P419, DOI [DOI 10.1002/NME.1620020310, 10.1002/nme.1620020310]
[2]   STRESS PROJECTION FOR MEMBRANE AND SHEAR LOCKING IN SHELL FINITE-ELEMENTS [J].
BELYTSCHKO, T ;
STOLARSKI, H ;
LIU, WK ;
CARPENTER, N ;
ONG, JSJ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1985, 51 (1-3) :221-258
[3]   IMPLEMENTATION AND APPLICATION OF A 9-NODE LAGRANGE SHELL ELEMENT WITH SPURIOUS MODE CONTROL [J].
BELYTSCHKO, T ;
LIU, WK ;
ONG, JSJ ;
LAM, D .
COMPUTERS & STRUCTURES, 1985, 20 (1-3) :121-128
[4]   IMPROVEMENTS IN 3-NODE TRIANGULAR SHELL ELEMENTS [J].
CARPENTER, N ;
STOLARSKI, H ;
BELYTSCHKO, T .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 23 (09) :1643-1667
[5]   A 9-NODE ASSUMED-STRAIN FINITE-ELEMENT FOR COMPOSITE PLATES AND SHELLS [J].
HAAS, DJ ;
LEE, SW .
COMPUTERS & STRUCTURES, 1987, 26 (03) :445-452
[6]  
Huang H-C., 1989, STATIC DYNAMIC ANAL
[7]  
Hughes T. J. R., 1987, FINITE ELEMENT METHO
[8]   A GENERALIZED DISPLACEMENT METHOD FOR THE FINITE-ELEMENT ANALYSIS OF THIN SHELLS [J].
KUI, LX ;
LIU, GQ ;
ZIENKIEWICZ, OC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (12) :2145-2155
[9]   DIRECT DETERMINATION OF FINITE-ELEMENT LOCAL SMOOTHING MATRICES [J].
MAJORANA, CE ;
ODORIZZI, SA ;
VITALIANI, R .
COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1985, 1 (01) :39-43
[10]   ON THE POLYNOMIAL CONVERGENT FORMULATION OF A C0 ISOPARAMETRIC SKEW BEAM ELEMENT [J].
MARTINI, L ;
VITALIANI, R .
COMPUTERS & STRUCTURES, 1988, 29 (03) :437-449