KINK AND ANTIKINK SOLITONS ON SINE-GORDON EQUATION

被引:0
作者
Segovia Chaves, Francis Armando [1 ]
机构
[1] Univ Dist Francisco Jose Caldas, Ciencias Fis, Bogota, Colombia
来源
REDES DE INGENIERIA-ROMPIENDO LAS BARRERAS DEL CONOCIMIENTO | 2012年 / 3卷 / 01期
关键词
Sine-Gordon equation; non-linear differential equations; soliton;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The sine-Gordon equation is a non-linear differential equation that has a wide range of applications, not only within relativity-field theory but also in solid-state physics and optical-fiber traveling signals. The present work focuses on two of the solutions to this differential equation, namely the kink-soliton solution and the antikink-soliton solution. In order to obtain such solutions, mathematical models are necessary so as to provide a graphical representation of the equation's space-time evolution.
引用
收藏
页码:6 / 11
页数:6
相关论文
共 5 条
[1]   High-order soliton breakup and soliton self-frequency shifts in a microstructured optical fiber [J].
Banaee, M. G. ;
Young, Jeff F. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (07) :1484-1489
[2]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144
[3]   Soliton control in chirped photonic lattices [J].
Kartashov, YV ;
Vysloukh, VA ;
Torner, L .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (07) :1356-1359
[4]   On exact solutions of the nonlinear Schrodinger equations in optical fiber [J].
Li, B ;
Chen, Y .
CHAOS SOLITONS & FRACTALS, 2004, 21 (01) :241-247
[5]   EXPERIMENTAL-OBSERVATION OF PICOSECOND PULSE NARROWING AND SOLITONS IN OPTICAL FIBERS [J].
MOLLENAUER, LF ;
STOLEN, RH ;
GORDON, JP .
PHYSICAL REVIEW LETTERS, 1980, 45 (13) :1095-1098