INTERPOLATION METHODS FOR THE CONSTRUCTION OF THE SHAPE FUNCTION-SPACE OF NONCONFORMING FINITE-ELEMENTS

被引:3
作者
GAO, JB [1 ]
SHIH, TM [1 ]
机构
[1] HUAZHONG UNIV SCI & TECHNOL,DEPT MATH,WUHAN 430074,PEOPLES R CHINA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1016/0045-7825(94)00728-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Based on the multivariate polynomial interpolation theory, a method is derived to construct shape function spaces which can pass relevant convergent tests. As applications of this method, the shape function spaces of de Veubeke's, Zienkiewicz's and Specht's elements are obtained. It is also shown that this method can be used to construct new finite elements.
引用
收藏
页码:93 / 103
页数:11
相关论文
共 15 条
[1]  
BAZELEY GP, 1986, 1ST P C MATR METH ST, P547
[2]  
Chen S., 1991, NUMER MATH SINICA, V13, P486
[3]  
CIARLET PG, 1978, FINITE ELEMENT ELLIP
[4]   COMPUTATIONAL ASPECTS OF POLYNOMIAL INTERPOLATION IN SEVERAL VARIABLES [J].
DEBOOR, C ;
RON, A .
MATHEMATICS OF COMPUTATION, 1992, 58 (198) :705-727
[5]   ON MULTIVARIATE POLYNOMIAL INTERPOLATION [J].
DEBOOR, C ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (03) :287-302
[6]  
GAO JB, 1993, NUMER MATH J CHIN U, V2, P186
[7]  
LASCAUX P, 1975, REV FR AUTOMAT INFOR, V9, P9
[8]  
Shi Z. C., 1990, NUMER MATH SINICA, V12, P76
[9]   THE F-E-M-TEST FOR CONVERGENCE OF NONCONFORMING FINITE-ELEMENTS [J].
SHI, ZC .
MATHEMATICS OF COMPUTATION, 1987, 49 (180) :391-405
[10]  
SHI ZC, 1986, NUMER MATH SINICA, V8, P428