BFGS-GSO for Global Optimization Problems

被引:2
作者
Ouyang, Aijia [1 ,2 ]
Liu, Libin [3 ]
Yue, Guangxue [4 ]
Zhou, Xu [2 ]
Li, Kenli [2 ]
机构
[1] Hunan Sci & Technol Econ Trade Vocat Coll, Coll Comp, Hengyang, Hunan, Peoples R China
[2] Hunan Univ, Coll Informat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[3] Univ Chizhou, Dept Math & Comp Sci, Chizhou 247000, Peoples R China
[4] Jiaxing Univ, Coll Math & Informat Engn, Jiaxing 314001, Peoples R China
基金
中国国家自然科学基金;
关键词
Global optimization; GSO; BFGS operator; BFGS-GSO; function;
D O I
10.4304/jcp.9.4.966-973
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
To make glowworm swarm optimization (GSO) algorithm solve multi-extremum global optimization more effectively, taking into consideration the disadvantages and some unique advantages of GSO, the paper proposes a hybrid algorithm of Broyden-Fletcher-GoldfarbShanno (BFGS) algorithm and GSO, i.e., BFGS-GSO by adding BFGS local optimization operator in it, which can solve the problems effectively such as unsatisfying solving precision, and slow convergence speed in the later period. Through the simulation of eight standard test functions, the effectiveness of the algorithm is tested and improved. It proves that the improved BFGS-GSO abounds in better multi-extremum global optimization in comparison with the basic GSO.
引用
收藏
页码:966 / 973
页数:8
相关论文
共 31 条
  • [1] Amruth P., 2007, WORKSH MULT SYST SOC, P32
  • [2] Bazaraa M. S., 1990, NONLINEAR PROGRAMMIN, DOI DOI 10.1002/0471787779
  • [3] Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions
    Chelouah, R
    Siarry, P
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 148 (02) : 335 - 348
  • [4] Multimodal optimization using crowding differential evolution with spatially neighbors best search
    [J]. Shen, D. (d.c.shen@163.com), 1600, Academy Publisher (08): : 932 - 938
  • [5] Hybrid Artificial Glowworm Swarm Optimization Algorithm for Solving Multi-dimensional Knapsack Problem
    Gong, Qiaoqiao
    Zhou, Yongquan
    Luo, Qifang
    [J]. CEIS 2011, 2011, 15
  • [6] Artificial Glowworm Swarm Optimization Algorithm for Solving 0-1 Knapsack Problem
    Gong, Qiaoqiao
    Zhou, Yongquan
    Yang, Yan
    [J]. SMART MATERIALS AND INTELLIGENT SYSTEMS, PTS 1 AND 2, 2011, 143-144 : 166 - 171
  • [7] KENEDY J, 2001, SWARM INTELLIGENCE
  • [8] Kramer O., 2010, MEMETIC COMPUT, P69, DOI [DOI 10.1007/s12293-010-0032-9, 10.1007/s12293-010-0032-9, DOI 10.1007/S12293-010-0032-9]
  • [9] Theoretical foundations for rendezvous of glowworm-in spired agent swarms at multiple locations
    Krishnanand, K. N.
    Ghose, D.
    [J]. ROBOTICS AND AUTONOMOUS SYSTEMS, 2008, 56 (07) : 549 - 569
  • [10] Theoretical foundations for multiple rendezvous of glowworm-inspired mobile agents with variable local-decision domains
    Krishnanand, K. N.
    Ghose, D.
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 3588 - +