ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM

被引:0
作者
Goncerz, Pawel [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Ul Lojasiewicza 6, PL-30348 Krakow, Poland
关键词
critical point; elliptic problem; minimax inequality; p-Laplacian; three critical points theorem; weak solution;
D O I
10.7494/OpMath.2012.32.3.473
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a quasilinear elliptic problem of the type -Delta(p)u = lambda(f (u) + mu g (u)) in Omega, u vertical bar(partial derivative Omega) = 0, where Omega subset of R-N is an open and bounded set, f, g are continuous real functions on R and lambda, mu is an element of R. We prove the existence of at least three solutions for this problem using the so called three critical points theorem due to Ricceri.
引用
收藏
页码:473 / 486
页数:14
相关论文
共 19 条
[1]   An eigenvalue Dirichlet problem involving the p-Laplacian with discontinuous nonlinearities [J].
Bonanno, G ;
Giovannelli, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 308 (02) :596-604
[2]   Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian [J].
Bonanno, G ;
Candito, P .
ARCHIV DER MATHEMATIK, 2003, 80 (04) :424-429
[3]   Multiplicity theorems for the Dirichlet problem involving the p-Laplacian [J].
Bonanno, G ;
Livrea, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (01) :1-7
[4]  
Gasinski Leszek, 2010, Discussiones Mathematicae Differential Inclusions, Control and Optimization, V30, P169, DOI 10.7151/dmdico.1118
[5]   Solutions and multiple solutions for quasilinear hemivariational inequalities at resonance [J].
Gasinski, L ;
Papageorgiou, NS .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :1091-1111
[6]  
Gasinski L., 2010, HDB NONCONVEX ANAL A, P183
[7]  
GASINSKI L, 2005, NONSMOOTH CRITICAL P
[8]   Nodal and multiple constant sign solutions for resonant p-Laplacian equations with a nonsmooth potential [J].
Gasinski, Leszek ;
Papageorgiou, Nikolaos S. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5747-5772
[9]   Existence of three solutions for p(x)-Laplacian equations [J].
Liu, Qiao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) :2119-2127
[10]   On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems [J].
Marano, SA ;
Motreanu, D .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (01) :37-52